Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=4^2-4\left(m+1\right)=16-4m-4=12-4m\)
Để phương trình có 2 nghiệm thì: \(\Delta\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow m\le3\)
Với \(m\le3\), theo hệ thức Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{cases}}\)
\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=16-2\left(m+1\right)=14-2m\)
Vì \(x_1^3+x_2^3< 100\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)< 100\)
\(\Leftrightarrow4\left[14-2m-\left(m+1\right)\right]< 100\)
\(\Leftrightarrow14-2m-m-1< 25\)
\(\Leftrightarrow13-3m< 25\)
\(\Leftrightarrow-3m< 12\Leftrightarrow m>-4\)
Vậy \(-4< m\le3\)
nên các giá trị nguyên của m là -3;-2;-1;0;1;2;3
Ta có \(x^2-4\left(m-1\right)x+5=0\) \(\left(a=1;b=-4\left(m-1\right);c=5\right)\)
a) Vì pt có nghiệm x=1\(\Rightarrow a+b+c=0\)
\(\Leftrightarrow1-4\left(m-1\right)+5=0\)
\(\Leftrightarrow1-4m+4+5=0\)
\(\Leftrightarrow4m=10\)
\(\Leftrightarrow m=\frac{5}{2}\)
b) Vì pt có nghiệm x1=1\(\Rightarrow x2=\frac{c}{a}=5\)
bạn tính đen ta để cm pt có nghiệm
sau đó bạn theo vi-ét ta đc
x1+x2= 2m (1)
x1x2=10 (2)
théo bài ta lại có x1=2x2 (3)
từ 1 và 3 ta có hệ pt
giải hệ pt đó theo m
tìm đc x1 và x2 bạn thay vào 3
thay vào rồi thì bạn rút gọn đi và tìm ra đc m
\(x^2-2\left(m+2\right)x+\left(m+2\right)^2-1=0.\)
\(x^2-2\left(m+2\right)x+\left\{\left(m+2\right)^2-1\right\}=0\)
\(\hept{\begin{cases}a=1\\b=-2\left(m+2\right)\\c=\left\{\left(m+2\right)^2-1\right\}\end{cases}}\)
\(\Delta'=\left(m+2\right)^2-\left\{\left(m+2\right)^2-1\right\}=1\)
\(\Delta'>0\)
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=-m-2+1=-1.\)
\(x_2=-m-2-1=-3\)
có \(\Delta'=\left(m+2\right)^2-\left(m+2\right)^2+1=1\) để ý phần này
m = bao nhiêu thì denta vẫn =1
vậy vs mọi giá trị của M thì denta vẫn = 1 , và pt có 2 nghiêm x1,x2
a)\(\Delta\)=(m+1)2 -4.1(2m-3) = m2 +2m +1 - 8m +12 =(m2 -6m+9) +4 =(m-3)2 +4 >0 với mọi m
pt luôn có 2 nghiệm pb với mọi m
b) x =3 là nghiệm
32 -(m+1).3 +2m -3 =0
=>-m +3 =0 => m =3
x=50;x=-1