K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2015

bạn tính đen ta để cm pt có nghiệm 

sau đó bạn theo vi-ét ta đc 

x1+x2= 2m (1)

x1x2=10 (2)

théo bài ta lại có x1=2x2 (3)

từ 1 và 3 ta có hệ pt

giải hệ pt đó theo m

tìm đc x1 và x2 bạn thay vào 3 

thay vào rồi thì bạn rút gọn đi và tìm ra đc m

15 tháng 4 2020

Ta có \(x^2-4\left(m-1\right)x+5=0\)    \(\left(a=1;b=-4\left(m-1\right);c=5\right)\)

a) Vì pt có nghiệm x=1\(\Rightarrow a+b+c=0\)

                                     \(\Leftrightarrow1-4\left(m-1\right)+5=0\)

                                     \(\Leftrightarrow1-4m+4+5=0\)

                                      \(\Leftrightarrow4m=10\)

                                      \(\Leftrightarrow m=\frac{5}{2}\)

b) Vì pt có nghiệm x1=1\(\Rightarrow x2=\frac{c}{a}=5\)

24 tháng 4 2020

a) Thay m=1 vào phương trình ta được:

x2+2.1.x-6.1-9=0

<=> x2+2x-6-9=0

<=> x2+2x-15=0

<=> x2+5x-3x-15=0

<=> x(x+5)-3(x+5)=0

<=> (x-3)(x+5)=0

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

b) Thay x=2 vào phương trình ta được:

22+2.2.m-6m-9=0

<=> 4+4m-6m-9=0

<=> -2x-5=0

<=> -2x=5

<=> \(x=\frac{-5}{2}\)

25 tháng 10 2018

khó quá 

em mới học lớp 6 hihi!

25 tháng 10 2018

a) Thay m = 3 vào đẳng thức đó ta có:

x2 - 6x + 4 = 0

\(\Leftrightarrow\) (x - 3)2 - 5 = 0

\(\Leftrightarrow\) (x - 3)2 = 5

\(\Leftrightarrow\) \(\orbr{\begin{cases}x-3=\sqrt{5}\\x-3=-\sqrt{5}\end{cases}}\)

\(\Leftrightarrow\) \(\orbr{\begin{cases}x=\sqrt{5}+3\\x=3-\sqrt{5}\end{cases}}\)

30 tháng 4 2015

Ta có : đenta' = (-m)- (m+1)(m-1) 
                     = m2-(m2-1)
                     =m2-m2 +1
                     =1 >0
==> phương trình luôn có 2 nghiệm phân biệt với mọi m khác 1

28 tháng 5 2016

\(x^2-2mx-6m=0\)

Xét \(\Delta'=m^2+6m\)Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\Rightarrow m^2+6m>0\Rightarrow m< -6\)hoặc \(m>0\)

Cần tìm \(x_1=2x_2\)hoặc \(x_2=2x_1\) ; Giả sử \(x_1< x_2\)

\(\Rightarrow x_1=m-\sqrt{m^2+6m}\) ; \(x_2=m+\sqrt{m^2+6m}\)

 \(x_1=2x_2\)\(\Rightarrow m+\sqrt{m^2+6m}=2\left(m-\sqrt{m^2+6m}\right)\)

\(\Rightarrow\) \(m=0\)(loại)

\(x_2=2x_1\)\(\Rightarrow m-\sqrt{m^2+6m}=2\left(m+\sqrt{m^2+6m}\right)\)

\(\Rightarrow m=-\frac{27}{4}\)(nhận) hoặc \(m=0\)(loại)

Vậy \(m=-\frac{27}{4}\)thoả mãn đề bài.

28 tháng 5 2015

a) x = 0 là nghiệm của phương trình

=> (m-1).02 -2.m.0 + m + 1 = 0

<=> m + 1 = 0 <=> m = -1

vậy m = -1 thì pt có nghiệm là x = 0

b) PT có 2 nghiệm thì trước hết pt đã cho là phương trình bậc 2 <=> m - 1\(\ne\) 0 <=> m \(\ne\)1

 \(\Delta\)' = (-m)2 - (m - 1)(m +1) = m2 - (m2 - 1) = 1 > 0

=> phương trình đã cho có 2 nghiệm là:

x1 = \(\frac{m+1}{m-1}\) ; x2 = \(\frac{m-1}{m-1}\) = 1

+) Để x1 .x2 = 5 <=> \(\frac{m+1}{m-1}\) = 5 <=> m +1 = 5( m - 1)

<=> m +1 = 5m - 5

<=> 6 = 4m <=> m = 3/2 (Thoả mãn)

+) Khi đó x1  + x2 = \(\frac{m+1}{m-1}\) + 1 = \(\frac{m+1+m-1}{m-1}=\frac{2m}{m-1}=\frac{2.\frac{3}{2}}{\frac{3}{2}-1}=\frac{3}{\frac{1}{2}}=6\)

21 tháng 5 2020

Mình không đồng ý với phần tìm đen-ta của bạn Trần Thị Loan

Phương trình (m-1)x2 - 2mx + m + 1 = 0 ( a=m-1; b=-2m; c=m+1)

​đen-ta = (-2m)2 - 4.(m-1).(m=1)=4

Vì đen-ta = 4 > 0 nên phương trình có 2 nghiệm phân biệt với mọi m

22 tháng 11 2015

a)\(\Delta\)=(m+1)2 -4.1(2m-3) = m2 +2m +1 - 8m +12 =(m2 -6m+9) +4 =(m-3)+4 >0 với mọi m

   pt luôn có 2 nghiệm pb với mọi m

b) x =3 là nghiệm

 32 -(m+1).3 +2m -3 =0

=>-m +3 =0 => m =3