K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

a)

(x-2).(x+2)-(x+2)^2=4

<=>(x^2-2^2)-(x^2+4x+4)=4

<=> x^2-4-x^2-4x-4=4

<=> -4x=12

<=> x=-3

19 tháng 8 2020

a) ( x - 2 )( x + 2 ) - ( x + 2 )2 = 4

<=> x2 - 4 - ( x2 + 4x + 4 ) = 4

<=> x2 - 4 - x2 - 4x - 4 = 4

<=> -4x - 8 = 4

<=> -4x = 12

<=> x = -3

b) 4( x + 1 )2 + ( 2x - 1 )2 - 8( x - 1 )( x + 1 ) = 11

<=> 4( x2 + 2x + 1 ) + 4x2 - 4x + 1 - 8( x2 - 1 )

<=> 4x2 + 8x + 4 + 4x2 - 4x + 1 - 8x2 + 8 = 11

<=> 4x + 13 = 11

<=> 4x = -2

<=> x = -2/4 = -1/2

a, ta có (x-1)(2x-1)=0
<=> x-1=0 <=> x=1
2x-1=0 x=1/2
để mx2-(m+1)x+1=0 tương đương với (x-1)(2x-1)=0
<=> m-m-1+1=0 có cùng tập nghiệm với (x-1)(2x-1)=0
với x=1 thì m-(m+1)+1=0
<=>m-m-1+1=0
<=> 0 m = 0 ( lđ )
Với x=1/2 thì 1/4m - (m+1)1/2+1=0
<=> 1/4m - (m+1)1/2+1=0
<=> 1/4m - 2(m+1)/4 +4/4 =0
<=>m-2m-2+4=0
<=> -m +2=0
<=> -m=-2
<=>m=2

b; Ta có: (x-3)(ax+2)=0 và (2x+b)(x+1)=0.

=> (x-3)(ax+2)=(2x+b)(x+1).

<=> ax2+(2-3a)x-6=2x2+(2+b)x+b.

<=>a=2 và 2-3a=2+b và b=-6 (Hai phương trình bậc 2 bằng nhau thì các hệ số tương ứng sẽ bằng nhau).

Vậy a=2; b=-6 thỏa mãn phương trình trên.

\(a,3\left(2x-1\right)-2\left(1-x\right)=x+9\)

\(6x-3-2+2x=x+9\)

\(8x-5=x+9\)

\(8x-5-x-9=0\)

\(7x-14=0\)

\(7x=14\)

\(x=2\)

\(-3\left(2x-1\right)-2\left(1-x\right)=x+9\left(1-x\right)\)

\(-6x+3-2+2x=x+9-9x\)

\(-4x+1=-8x-9\)

\(-4x+1+8x+9=0\)

\(4x+10=0\)

\(4x=10\)

\(x=\frac{10}{4}=\frac{5}{2}\)

\(c,\left(1-x\right)\left(2x-1\right)-2\left(2-x\right)\left(2+x\right)=x=9\)

SAI ĐỀ 

18 tháng 3 2020

a) 3(2x - 1) - 2(1 - x) = x + 9 

<=> 6x - 3 - 2 + 2x = x + 9 

<=> 6x + 2x - x = 9 + 3 + 2

<=> 7x = 14

<=> x = 14/7 = 2

vậy giải phương trình ta đc x = 2

b) -3(2x - 1) - 2(1 - x) = x + 9(1 - x)

<=> -6x + 3 - 2 + 2x = x + 9 - 9x 

<=> -6x + 2x + 9x - x = 9 - 3 + 2 

<=> 4x = 8 

<=> x = 8/4 = 2

c) (1 - x)(2x - 1) - 2(2 - x)(2 + x) = x + 9 

<=> 2x - 1 - 2x2 + x - 8 + 2x2 = x + 9 

<=> 2x + x - x = 9 +1 +8 

<=> 2x = 18 

<=> x = 9 

21 tháng 6 2020

a) 8x - 3 = 5x + 12

<=> 8x - 5x = 12 + 3

<=> 3x = 15

<=> x = 5

b) \(\frac{x}{x^2-4}=\frac{1}{x+2}-\frac{1-x}{2-x}\) ; x khác +-2

<=> \(\frac{x}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x+2}-\frac{1-x}{2-x}\)

=> x(2 - x) = (x - 2)(2 - x) - (1 - x)(x + 2)(x - 2)

<=> -x^2 + 2x = x^3 - 2x^2

<=> -x^2 + 2x - x^3 + 2x^2 = 0

<=>  x^3 - x^2 - 2x = 0

<=> x(x + 1)(x - 2) = 0

<=> x = 0 hoặc x + 1 = 0 hoặc x - 2 = 0

<=> x = 0 (tm) hoặc x = -1 (tm) hoặc x = 2 (ktm)

Vậy: phương trình có tập nghiệm: S = {0; -1}

c) |x - 5| = 3x + 1

Ta có: \(\left|x-5\right|=\hept{\begin{cases}x-5\text{ nếu }x-5\ge0\Leftrightarrow x\ge5\\-\left(x-5\right)\text{ nếu }x-5< 0\Leftrightarrow x< 5\end{cases}}\)

+) Nếu x > 5, ta có phương trình:

x - 5 = 3x + 1

<=> x - 3x = 1 + 5

<=> -2x = 6

<=> x = -3 (ktm)

+) Nếu x < 5, ta có phương trình:

-(x - 5) = 3x + 1

<=> -x + 5 = 3x + 1

<=> -x - 3x = 1 - 5

<=> -4x = -4

<=> x = 1 (tm)

Vậy: phương trình có tập nghiệm: S = {1}

18 tháng 12 2019

\(\text{a) Thay a = 4 vào pt ta có:}\)
      \(\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x+4\right)+\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=2\)
\(\Leftrightarrow\frac{x^2-16+x^2-4}{x^2-4x+2x-8}=2\)
\(\Leftrightarrow\frac{2x^2-20}{x^2-2x-8}=2\)
\(\Leftrightarrow2x^2-20=2.\left(x^2-2x-8\right)\)
\(\Leftrightarrow2x^2-20=2x^2-4x-16\)
\(\Leftrightarrow2x^2-2x^2+4x=-16+20\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)

\(\text{b) Thay x = -1 vào pt ta có:}\)
     \(\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)
\(\Leftrightarrow\frac{a-1}{1}+\frac{-3}{-\left(a+1\right)}=2\)
\(\Leftrightarrow\left(a-1\right)+\frac{3}{a+1}=2\)
\(\Leftrightarrow\frac{\left(a-1\right)\left(a+1\right)+3}{a+1}=2\)
\(\Leftrightarrow\frac{a^2-1+3}{a+1}=2\)
\(\Leftrightarrow a^2+2=2.\left(a+1\right)\)
\(\Leftrightarrow a^2+2=2a+2\)
\(\Leftrightarrow a^2-2a=2-2\)
\(\Leftrightarrow a\left(a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
Vậy để pt có nghiệm là x = 1 thì a = {0 ; 2}
 


 

18 tháng 12 2019

\(a.Thay:a=4\Leftrightarrow\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)

                    \(\Leftrightarrow\frac{\left(x+4\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}=\frac{2\left(x+2\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}\)

                    \(\Rightarrow\left(x+4\right)\left(x-4\right)+\left(x-2\right)\left(x+2\right)=2\left(x+2\right)\left(x-4\right)\)

                    \(\Leftrightarrow x^2-4x+4x-16+x^2+2x-2x-4=\left(2x+4\right)\left(x-4\right)\)

                    \(\Leftrightarrow2x^2-20=2x^2-8x+4x-16\)

                    \(\Leftrightarrow2x^2-20-2x^2+8x-4x+16=0\)

                    \(\Leftrightarrow4x-4=0\)

                    \(\Leftrightarrow x=1\)

                          

21 tháng 10 2020

Giúp gì thế!!!

21 tháng 10 2020

A = 4(x - 1)(x + 1) - 4x(x - 2)

= 4(x2 - 1) - 4(x2 - 2x)

= 4(x2 - 1 - x2 + 2x)

= 4(2x - 1)

= 8x - 4

B = 2(x - 2)2 - (2x - 1)(x - 3)

= 2(x2 - 4x + 4) - (2x2 - 7x + 3)

= 2x2 - 8x + 8 - 2x2 + 7x - 3

= -x + 5

6 tháng 12 2019

\(M=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)

a) Để M có nghĩa \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x\ne0\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne0\end{cases}}\)

Vậy \(x\ne2\)và \(x\ne0\)thì M có nghĩa

b) \(M=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)

\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)

\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3\)

\(=x\left(x-2\right)+3\)

\(=x^2-2x+3\)

c) Ta có: \(M=x^2-2x+3\)

\(=\left(x-1\right)^2+2\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+2\ge0+2;\forall x\)

Hay \(M\ge2;\forall x\)

Dấu'="xẩy ra \(\Leftrightarrow x-1=0\)

                      \(\Leftrightarrow x=1\)

Vậy \(M_{min}=2\)\(\Leftrightarrow x=1\)