Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-y^2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=x-y-1\\\left(y+\sqrt{x}\right)^2-y^2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2\sqrt{x}+1=x-y-1\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x}-y=2\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)
Đặt \(\hept{\begin{cases}\sqrt{x}=a\left(\ge0\right)\\y=b\end{cases}}\)
=> hệ phương trình \(\Leftrightarrow\hept{\begin{cases}2a-b=2\\\left(b+a-ab\right)\left(b+a+ab\right)=0\end{cases}}\)
Tham khảo nhé~
a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)
ĐK : x ≥ 0
<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)
<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)
<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)
<=> \(\sqrt{x}\times\frac{2}{3}=5\)
<=> \(\sqrt{x}=\frac{15}{2}\)
<=> \(x=\frac{225}{4}\)( tm )
Mấy bài này dài vật vã ghê =)))))))))))))
1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)
=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)
b, M = \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))
= \(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)
= \(\sqrt{3}\left(x-1\right)\)
Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:
M = \(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)
Vậy với x = \(2+\sqrt{3}\)thì M = \(3+\sqrt{3}\)
2, Mình chỉ giải câu a thôi nhé:
\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)
\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)
\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)
\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)
Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)
\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)
\(\Leftrightarrow2\left(b+c\right)\ge4a\)
\(\Leftrightarrow b+c\ge2a\)
4*. Thật ra cái này mình xài làm trội, làm giảm là được mà
Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)
Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)
+ .........................................................
\(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)
Cộng tất cả vào
\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)
\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)
\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)
\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)
\(A+1>2\sqrt{n+1}-3+1\)
\(A+1>2\sqrt{n+1}-2\)
\(A+1>2\left(\sqrt{n+1}-1\right)\)
Vậy ta có điều phải chứng minh.
\(đkxđ\Leftrightarrow\hept{\begin{cases}x-5\ge0\Rightarrow x\ge5\\7-x\ge0\Rightarrow x\le7\end{cases}\Rightarrow5\le x\le7}\)
Ta có :
\(\sqrt{x-5}+\sqrt{7-x}=2.\)
\(\Rightarrow\left(\sqrt{x-5}+\sqrt{7-x}\right)^2=2^2\)
\(\Rightarrow\sqrt{x-5}^2+2\sqrt{\left(x-5\right)\left(7-x\right)}+\sqrt{7-x}^2=4\)
\(\Rightarrow x-5+2\sqrt{\left(x-5\right)\left(7-x\right)}+7-x=4\)
\(\Rightarrow2\sqrt{\left(x-5\right)\left(7-x\right)}=2\)
\(\Rightarrow\sqrt{\left(x-5\right)\left(7-x\right)}=1\)
\(\Rightarrow\left(x-5\right)\left(7-x\right)=1\)
\(\Rightarrow-x^2+2x-35=1\)
\(\Rightarrow x^2-2x+36=0\)
\(\Rightarrow\left(x-1\right)^2+35=0\)( vô lí )
\(\Rightarrow\)Phương trình vô nghiệm
\(x^2+6x-3=4x\sqrt{2x-1}\left(1\right)\) ĐK: \(x\ge\frac{1}{2}\)
Đặt \(\sqrt{2x-1}=a\ge0\)
\(\Rightarrow6x-3=3a^2\)
=> (1) <=> x^2 +3a^2 = 4ax
<=> x^2 -4ax +3a^2 =0
<=> x^2 -ax - 3ax + 3a^2 =0
<=> x(x-a) -3a(x-a) =0
<=> (x-a) ( x-3a ) =0
\(\Leftrightarrow\orbr{\begin{cases}x=a\\x=3a\end{cases}}\)
TH1: x=a
\(\Rightarrow x=\sqrt{2x-1}\)\(\left(x\ge0\right)\)
\(\Leftrightarrow x^2=2x-1\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
<=> x=1 (tm)
TH2: x= 3a
\(\Rightarrow x=3\sqrt{2x-1}\left(x\ge0\right)\)
\(\Leftrightarrow x^2=18x-9\)
\(\Leftrightarrow x^2-18x+9=0\)
\(\Delta=288\)
=> pt có 2 nghiệm pb \(\orbr{\begin{cases}x=\frac{18+12\sqrt{2}}{2}=9+6\sqrt{2}\left(tm\right)\\x=\frac{18-12\sqrt{2}}{2}=9-6\sqrt{2}\left(tm\right)\end{cases}}\)
Vậy ...
đk: \(\hept{\begin{cases}x\ge\frac{3}{2}\\y\ge\frac{3}{2}\end{cases}}\)
Xét y = 0 => PT vô nghiệm
Xét y khác 0:
Ta có: \(x^3+y^3-8xy\sqrt{2\left(x^2+y^2\right)}+7x^2y+7xy^2=0\)
\(\Leftrightarrow x^3+y^3+7xy\left(x+y\right)=8xy\sqrt{2\left(x^2+y^2\right)}\)
\(\Leftrightarrow\frac{\left(x^3+y^3\right)}{y^3}+\frac{7xy\left(x+y\right)}{y^3}=\frac{8xy\sqrt{2\left(x^2+y^2\right)}}{y^3}\)
\(\Leftrightarrow\left(\frac{x}{y}\right)^3+1+7\cdot\frac{x}{y}\cdot\left(1+\frac{x}{y}\right)=8\cdot\frac{x}{y}\cdot\sqrt{2+2\left(\frac{x}{y}\right)^2}\)
Đặt \(\frac{x}{y}=t>0\) khi đó: \(PT\Leftrightarrow t^3+1+7t\left(1+t\right)=8t\sqrt{2\left(1+t^2\right)}\)
\(=\left[8t\sqrt{2\left(1+t\right)^2}-8t\left(t+1\right)\right]+8t\left(t+1\right)\)
\(\Leftrightarrow t^3-t^2-t+1=8t\cdot\frac{2\left(1+t^2\right)-\left(t+1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow t^2\left(t-1\right)-\left(t-1\right)=8t\cdot\frac{2+2t^2-t^2-2t-1}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow\left(t-1\right)^2\left(t+1\right)=8t\cdot\frac{\left(t-1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow\left(t-1\right)^2\left[t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}\right]=0\)
Mà \(t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}=\frac{t\left(\sqrt{2\left(1+t^2\right)}+t+1\right)+\sqrt{2\left(1+t^2\right)}+t}{\sqrt{2\left(1+t^2\right)}+t+1}>0\)
\(\Rightarrow t-1=0\Leftrightarrow t=1\Leftrightarrow\frac{x}{y}=1\Rightarrow x=y\)
Khi đó \(\sqrt{y}-\sqrt{2x-3}+2x=6\)
\(\Leftrightarrow\sqrt{x}-\sqrt{2x-3}=6-2x\)
\(\Leftrightarrow\frac{x-2x+3}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)
\(\Leftrightarrow\frac{3-x}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)
\(\Leftrightarrow\left(x-3\right)\left(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}\right)=0\)
Nếu \(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}=0\)
\(\Leftrightarrow\frac{1}{\sqrt{x}+\sqrt{2x-3}}=2\)
\(\Leftrightarrow\sqrt{x}+\sqrt{2x-3}=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}=\frac{\frac{13}{2}-2x}{2}\) (CMT)
\(\Leftrightarrow4\sqrt{x}=13-4x\)
\(\Leftrightarrow16x=169-104x+16x^2\)
\(\Leftrightarrow16x^2-120x+169=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=\frac{15+2\sqrt{14}}{4}\\x=y=\frac{15-2\sqrt{14}}{4}\end{cases}}\)
Nếu \(x-3=0\Rightarrow x=y=3\)
Vậy ta có 3 cặp số (x;y) thỏa mãn: ...
Thử lại ta thấy cặp nghiệm vô tỉ:
\(x=y=\frac{15\pm2\sqrt{14}}{4}\) không thỏa mãn nên ta chỉ có 1 cặp nghiệm thỏa mãn:
\(x=y=3\)
Câu a thì mình chịu rồi @@ sorry nha
Còn câu b, bạn thấy rằng x2-3x+2-x2+x+1+2x-3=0 đúng không nào?
Nếu như bạn còn nhớ công thức a+b+c=0 <=> a3+b3+c3=3abc
Thì chắc chắn là bạn sẽ giải ra được bài này thôi. Đáp số là x=1 hoặc x=2 hoặc x=3/2 bạn nhé.
Chúc bạn giải được câu b này. Nếu như vẫn còn thắc mắc thì trả lời lại cho mình để mình gừi bài giải chi tiết nhé, do giờ mình đang bận @@
chỗ \(S=\left\{\sqrt{2};\frac{-\sqrt{2}}{2}\right\}\) nha bạn mình sai chỗ đó
\(\Delta=b^2-4ac=\left(-\sqrt{2}\right)^2-4.2.\left(-2\right)=18\)
\(\Delta>0\Rightarrow\)pt có 2 nghiệm phân biệt \(\sqrt{\Delta}=\sqrt{18}=3\sqrt{2}\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{\sqrt{2}+3\sqrt{2}}{2.2}=\sqrt{2}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{\sqrt{2}-3\sqrt{2}}{2.2}=\frac{-\sqrt{2}}{2}\)
Vậy \(S=\left\{2;\frac{-\sqrt{2}}{2}\right\}\)