K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x-5\ge0\Rightarrow x\ge5\\7-x\ge0\Rightarrow x\le7\end{cases}\Rightarrow5\le x\le7}\)

Ta có :

\(\sqrt{x-5}+\sqrt{7-x}=2.\)

\(\Rightarrow\left(\sqrt{x-5}+\sqrt{7-x}\right)^2=2^2\)

\(\Rightarrow\sqrt{x-5}^2+2\sqrt{\left(x-5\right)\left(7-x\right)}+\sqrt{7-x}^2=4\)

\(\Rightarrow x-5+2\sqrt{\left(x-5\right)\left(7-x\right)}+7-x=4\)

\(\Rightarrow2\sqrt{\left(x-5\right)\left(7-x\right)}=2\)

\(\Rightarrow\sqrt{\left(x-5\right)\left(7-x\right)}=1\)

\(\Rightarrow\left(x-5\right)\left(7-x\right)=1\)

\(\Rightarrow-x^2+2x-35=1\)

\(\Rightarrow x^2-2x+36=0\)

\(\Rightarrow\left(x-1\right)^2+35=0\)( vô lí )

\(\Rightarrow\)Phương trình vô nghiệm

5 tháng 10 2020

a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)

ĐK : x ≥ 0

<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)

<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)

<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)

<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)

<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)

<=> \(\sqrt{x}\times\frac{2}{3}=5\)

<=> \(\sqrt{x}=\frac{15}{2}\)

<=> \(x=\frac{225}{4}\)( tm )

23 tháng 7 2018

Mấy bài này dài vật vã ghê =)))))))))))))

1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\) 

\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)

=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)

=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)

\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)

=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)

b, M \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))

\(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)

\(\sqrt{3}\left(x-1\right)\)

Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:

M\(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)

Vậy với x = \(2+\sqrt{3}\)thì M\(3+\sqrt{3}\)

2, Mình chỉ giải câu a thôi nhé:

\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)

\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)

\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)

\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)

Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)

\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)

\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)

\(\Leftrightarrow2\left(b+c\right)\ge4a\)

\(\Leftrightarrow b+c\ge2a\)

4*. Thật ra cái này mình xài làm trội, làm giảm là được mà

Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)

\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)

\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)

Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)

          \(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)

  +      .........................................................

          \(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)  

Cộng tất cả vào

\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)

\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)

\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)

\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)

\(A+1>2\sqrt{n+1}-3+1\)

\(A+1>2\sqrt{n+1}-2\)

\(A+1>2\left(\sqrt{n+1}-1\right)\)

Vậy ta có điều phải chứng minh.

23 tháng 7 2018

Cảm ơn b Trần Bảo Như nha <3

25 tháng 7 2019

#)Giải :

1.\(\sqrt{m+2\sqrt{m-1}}-\sqrt{m-2\sqrt{m-1}}\)

\(=\sqrt{m-1+2\sqrt{m-1}+1}+\sqrt{m-1-2\sqrt{m-1}+1}\)

\(=\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\)

\(=\sqrt{m-1}+1+\sqrt{m-1}-1\)

\(=2\sqrt{m-1}\)

19 tháng 12 2015

Nguyễn Hữu Huy nói đúng đó

19 tháng 12 2015

Bằng 3 mà Tuấn Anh :3

Có phải bằng 2 đâu :3

27 tháng 5 2018

chỗ \(S=\left\{\sqrt{2};\frac{-\sqrt{2}}{2}\right\}\)  nha bạn mình sai chỗ đó

27 tháng 5 2018

\(\Delta=b^2-4ac=\left(-\sqrt{2}\right)^2-4.2.\left(-2\right)=18\)

\(\Delta>0\Rightarrow\)pt có 2 nghiệm phân biệt \(\sqrt{\Delta}=\sqrt{18}=3\sqrt{2}\)

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{\sqrt{2}+3\sqrt{2}}{2.2}=\sqrt{2}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{\sqrt{2}-3\sqrt{2}}{2.2}=\frac{-\sqrt{2}}{2}\)

Vậy \(S=\left\{2;\frac{-\sqrt{2}}{2}\right\}\)

2 tháng 3 2020

1)\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-y^2x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=x-y-1\\\left(y+\sqrt{x}\right)^2-y^2x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2\sqrt{x}+1=x-y-1\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x}-y=2\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)

Đặt \(\hept{\begin{cases}\sqrt{x}=a\left(\ge0\right)\\y=b\end{cases}}\)

=> hệ phương trình \(\Leftrightarrow\hept{\begin{cases}2a-b=2\\\left(b+a-ab\right)\left(b+a+ab\right)=0\end{cases}}\)

Tham khảo nhé~