K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

vì n2+3n chia hết cho n+3. Vì n2+3n = n(n+3)

nên -13 phải chia hết cho n+3

hay n+3 thuộc ước của -13

=> n+3= 13 => n=10

     n+3= -13 => n=-16

     n+3= -1 => n= -4

     n+3= 1 => n= -2

      Vậy n = {10;-16;-4;-2}

17 tháng 1 2016

chtt

ai xem qua ,tick cho mình sẽ may mắn cả năm 

6 tháng 12 2015

n2 + 3n - 13 chia hết cho n + 3

=> n(n+3) - 13 chia hết cho n+3

Vì n(n+3) chia hết cho n+3

=> -13 chia hết cho n+3

=> n+3 thuộc Ư(-13)

=> n+3 thuộc {-13; -1; 1; 13}

=> n thuộc {-16; -4; -2; 10}

24 tháng 1 2016

n2 + 3n - 13 chia hết cho n + 3

=> n(n + 3) - 13 chia hết cho 13

=> 13 chia hết cho n + 3 (Vì n(n + 3) chia hết cho n + 3)

=> n + 3 thuộc {1; -1; 13; -13}

=> n thuộc {-2; -4; 10; -16}

24 tháng 1 2016

{-16;-4;-2;10} , tick nha

17 tháng 8 2018

Bài 1:

- Gọi 6 số từ nhiên liên tiếp là a ; a+ 1; a+2 ; a+3 ; a+4 ; a+5 (a : tự nhiên)

Tổng của chúng là:

a+ (a+1) + (a+2) +(a+3)+(a+4)+(a+5)

= 6a+15

Ta có: 6a chia hết cho 6 với mọi a.

15 không chia hết cho 6.

=> Tổng của chung không chia hết cho 6.

13 tháng 8 2018

Làm từng phần thôi dài quá

Bài 1 :

Gọi số tự nhiên đầu tiên tiên là a

=> a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5

= 6a + 15

mà 6a chia hết cho 6; 15 ko chia hết cho 6 => tổng đó KO chia hết

13 tháng 8 2018

Bài 2 :

Ta thấy : 3^2018 có tận cùng là 1 số lẻ

11^2017 cũng có tận cùng là một số lẻ

=> 3^2018 - 11^2017 là một số chẵn => 3^2018 - 11^2017 chia hết cho 2

12 tháng 8 2018

Bài 1:

Tổng của 6 STN liên tiếp coi là:

\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

\(=6a+15⋮̸6\)

KL: Tổng của 6 STN liên tiếp không chia hết cho 6.

Bài 2:

\(3\equiv1\left(mod2\right)\Rightarrow3^{2018}\equiv1\left(mod2\right)\)( 1 )

\(11\equiv1\left(mod\right)2\Rightarrow11^{2017}\equiv1\left(mod2\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => \(3^{2018}-11^{2017}\equiv1-1=0\left(mod2\right).\)

KL; đpcm.

Bài 3 :

a) \(n+4⋮n\Rightarrow4⋮n\Leftrightarrow n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}.\)

KL: ...

b) \(3n+7⋮n\Rightarrow7⋮n\Leftrightarrow n\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}.\)

KL: ...

16 tháng 8 2018

bài 1 ko

bài 2

ta có \(\hept{\begin{cases}3^{2018}=3^{2016}.3^2=\left(3^4\right)^{504}.9=81^{504}.9=\cdot\cdot\cdot1.9=\cdot\cdot\cdot9\\11^{2017}=\cdot\cdot\cdot1\end{cases}}\)

\(\Rightarrow3^{2018}-11^{2017}=\cdot\cdot\cdot9-\cdot\cdot\cdot1=\cdot\cdot\cdot8⋮2\left(ĐPCM\right)\)

bài 3

a) 

\(n+4⋮n\Rightarrow4⋮n\Rightarrow n\inƯ\left(\text{4}\right)\)

\(\Rightarrow n\in\left\{1;2;4;-1;-2;-4\right\}\)

b)

\(3n+7⋮n\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\)

\(\Rightarrow n\in\left\{1;7;-1;-7\right\}\)

16 tháng 1 2019

a, n - 1  chia hết cho n  - 1 => 3 ( n -1 ) chia hết cho n - 1 => 3n - 3 chia hết cho n - 1 

Mà 3n + 2 = 3n - 3 + 5 Vì 3n - 3 chia hết cho n - 1 => 5 chia hết cho n - 1 

=> n - 1 thuộc 1 và 5 => n thuộc 2 và 6 

b, Tương tự 

c, \(\hept{\begin{cases}n^2+5⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow\hept{\begin{cases}n^2+5⋮n+1\\n^2+n⋮n+1\end{cases}}\Rightarrow5-n⋮n+1\)

\(\hept{\begin{cases}5-n⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow5-n+n+1⋮n+1\)

\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{1;2;3;6\right\}\Rightarrow n\in\left\{0;1;2;5\right\}\)

16 tháng 1 2019

a) Ta có : 3n + 2 chia hết cho n - 1

         => 3n + 2 - 3.( n - 1) chia hết cho n - 1

         => 3n + 2 - ( 3n - 3 ) chia hết cho n - 1

        =>  3n + 2 - 3n + 3 chia hết cho n - 1

         => 5 chia hết cho n -1

        => n -1 thuộc Ư(5) = { 1 ; - 1 ; 5 ; -5}

Ta có bảng ;

n-11-15-5
n206-6

 Vậy n thuộc { 2;0;6;-6}

b) Ta có : 3n + 24 chia hết cho  n -4 

           => 3n + 24 - 3.(n-4) chia hết cho n -4

           => 3n + 24 - (3n - 12 ) chia hết cho n -4

            => 3n + 24 - 3n + 12 chia hết cho n -4

            => 36 chia hết cho n -4

            => n - 4 thuộc Ư(36) ( bạn tự làm nhé)

c) Tương tự nhé

7 tháng 7 2015

Mình làm vd 2 bài nha:

a) n+6 chia hết cho n+2

n+2 chia hết cho n+2

nên (n+6)-(n+2) chia hết cho n+2

4 chia hết cho n-2

=> n-2 = 1;-1;2;-2;4;-4

=> n=3;1;4;0;6

d) n^2 +4 chia hết cho 4

n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1

=> (n^2+2n+1)-(n^2+4) chia hết cho n-1

=> 2n+1-4 chia hết cho n-1

=> 2n - 3 chia hết cho n-1

 n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1

=> (2n-2)-(2n-3) chia hết cho n-1

=> 1 chia hết cho n-1

=> n-1 = 1;-1

=> n=0

7 tháng 7 2015

Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}