Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2n+1}{n-3}=\frac{2n-6+7}{n-3}=2+\frac{7}{n-3}\)
để phân số là số tự nhiên =>\(n-3\inƯ\left(7\right)=\left\{1,7\right\}\)( chắc lớp 6 chưa học số âm bạn nhỉ ? )
\(\orbr{\begin{cases}n-3=1\\n-3=7\end{cases}\Leftrightarrow\orbr{\begin{cases}n=4\\n=10\end{cases}}}\)
Vậy n=4,n=10 thì \(2n+1⋮n-3\)
Câu 2:
gọi số thứ nhất là k
=> 3 số tiếp theo là k+1,k+2,k+3
tổng của 4 số => \(k+\left(k+1\right)+\left(k+2\right)+\left(k+3\right)\)
\(\Rightarrow4k+6\)
Ta có \(4⋮4\Rightarrow4k⋮4\)
6 không chia hết cho 4
=> 4k+6 không chia hết cho 4
=> tổng 4 số tự nhiên liên tiếp không chia hết cho 4
gọi y là số thứ nhất
=> y+1,y+2,y+3,y+4 là 4 số tiếp theo
tổng 5 số = \(y+\left(y+1\right)+\left(y+2\right)+\left(y+3\right)+\left(y+4\right)\)
=\(5y+10\)
ta có 5y chia hết cho 5
10 chia hết cho 5
=> 5y+10 chia hết cho 5
=> tổng 5 số tự nhiên liên tiếp chia hết cho 5
http://d.violet.vn/uploads/resources/511/507795/preview.swf
BÀI 6
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5
gọi 3 STN bất kì là a ; a+1 ; a+2
nếu a chia hết cho 3
nếu a :3 dư 2=> a+1 chia hết cho 3
nếu a :3 dư 1=>a+2 chia hết cho 3
=>đpcm.
ba số tự nhiên liên tiếp:n;n+1;n+2 nếu n chia hết cho 5
nếu n chia cho 3 dư 1 thì n+1 chia hết cho 3
nếu n chia cho 3 dư 2 thì n+2 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp bát kỳ thì luôn có 1 số chia hết cho 3
hình như thế bọn mk chưa học đến
gọi 2 số cần tìm là abc và def
ta có ;
abcdef = abc000 + def
=100abc + def
=1001abc + ( def - abc )
vì 1001 chia hết cho 13 suy ra 1001abc chia hết cho 13 suy ra 1001abc + (def-abc)chia hết cho 13
theo nguyên lý di-rich-le thì luôn luôn có 2 số mà khi viết liền nhau sẽ tạo thành số có 6 chữ số chia hết cho 13.
MÌNH KO CHẮC CHẮN LẮM ĐÂU ĐÓ !!!
Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế, vd. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26.
Gọi s(n) là tổng các chữ số của n.
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a*1000) chia hết cho 27 ta có đpcm Giả sử s(a*1000) chia cho 27 dư r với 1≤ r ≤ 26, tức 1 ≤ 27 - r ≤ 26
Ta chọn số b mà 1 ≤ b ≤ 899 sao cho s(b) = 27 - r
=> s(a*1000 + b) = s(a*1000) + s(b) = (27n + r) + (27 - r) = 27(n + 1) chia hết cho 27 (đpcm)
mấy cái này chứng minh mần j nhỉ
cái này là vốn có để chưngs minh rồi
nếu chứng mnh thì cũng bằng thừa
a, Gọi 2 số tự nhiên liến tiếp là : a;a+1 (a thuộc N)
1 số khi chia cho 2 có dạng : 2k;2k+1 (k thuộc N)
+) Nếu a=2k => a chia hết cho 2 (1)
+) Nếu a=2k+1 => a+1=2k+2 chia hết cho 2 (2)
Từ (1) và (2)
=> Trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2.
Vậy trong 2 số tự nhiên liên tiếp, có 1 số chia hết cho 2.
b, Tương tự phần a
Gọi 4 stn liên tiếp đó là:
a,a+1,a+2,a+3 ( a E N)
a có dạng: 4k;4k+1;4k+2;4k+3 (k E N)
+) a=4k thì chắc chắn sẽ chia hết cho 4
+) a=4k+1=> a+3=4k+3+1=4k+4 chia hết cho 4
+) a=4k+2=> a+2=4k+2+2=4k+4 chia hết cho 4
+) a=4k+3=> a+1=4k+3+1=4k+4 chia hết cho 4
Vậy trong 4 stn liên tiếp luôn có 1 số chia hết cho 4(ĐPCM)
Câu b giải tương tự thôi