Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3
=(...6).(...8)=..8
2003^2004=(2003^4)^501 = ...1
2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2
b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5
c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10
nếu đúng nhớ tick cho mình nhé
Ta có 16 kết thúc là 6 => 16 mũ bao nhiêu cũng kết thúc là 6 hay là\(16^{2017}\)=......6
Ta có \(8^{2016}=\left(8^4\right)^{504}\)=4096 mũ 504 => 8 mũ 2016 = .........6
=> \(16^{2017}-8^{2016}=......6-........6=......0\)
Vậy \(16^{2017}-8^{2016}\)
\(3^{2n+2}+2^{n+1}+3^{2n}+2^{n+3}\)
\(=\left(3^{2n+2}+3^{2n}\right)+\left(2^{n+1}+2^{n+3}\right)\)
\(=3^{2n}\left(3^2+3^0\right)+2^n\left(2^1+2^3\right)\)
\(=3^{2n}.10+2^n.10\)=>\(\left(3^{2n}.10+2^n.10\right)⋮10\)
=> \(3^{2n+2}+2^{n+1}+3^{2n}+2^{n+3}\)chia hết cho 10
Mik giải câu b trước nhé
n2:
* Với n là số lẻ : mọi số lẻ bình phương thì cũng bằng số lẻ
mà nếu kết quả = số lẻ thì khi đó n cũng là số lẻ . Lẻ - lẻ = chẵn. Chẵn trừ 1 = lẻ
*Với x là số chẵn : mọi số chẵn bình phương đều bằng số chẵn .
mà nếu kết quả = chẵn thì khi đó n cũng là số chẵn. Chẵn - chẵn = chẵn. Chẵn trừ 1 = lẻ
câu a nè
53= 125
1+2+5=8 ; 8 ko chia hết cho 9
10 mũ bao nhiêu thì sẽ có bấy nhiêu con số 0
Vd : 102=100
103=1000
thì bây giờ , ta tính tổng các con số : 100 hay 1000 hay 10000 đều cộng các con số lại = 1 ( 1+0+0+0+...=1)
125 có tổng = 8
8+1 =9
vì 9 chia hết cho 9 nên mọi số n đều chia hết cho 9
a)Ta có: 10n=1000...0 (n chữ số 0) có tổng cái chữ số là 1
Lại có: 53=125 có tổng các chữ số là 8
Suy ra; 10n+ 53có tổng các chữ số bằng 9 chia hết cho 9
Vay 10n+53 chia hết cho 9
b) n2 - n -1
=n.n -n -1
=n.(n -1)-1
Vì n và n-1 là 2 số liên tiếp suy ra n.(n-1) là số chẵn hay n2-n là số chẵn
Vì 1 là số chẵn mà chẵn - lẻ = lẻ nên n.(n-1)-1 là số lẻ hay n2-n-1 là số lẻ
Vậy n2-n-1 là số lẻ
( dau . là dấu nhân nhé bạn)
3^n+3+3^n+1+2^n+3+2^n+2 chia hết cho 6
=3^n.30+2^n.12
Suy ra 3^n+3+3^n+1+2^n+2^n+2 chia hết cho 6
nhớ tích đúng cho mình nha
10n + 53
= 10n + 125
Có dạng :
10...00 ( n số 0 ) + 125
= 10...0125
Số trên có tổng là : 1 + 0 + 0 + ... + 0 + 1 + 2 + 5 = 9 chia hết cho 9
Vậy 10n + 53 chia hết cho 9 với mọi n
\(=3^{n+2}+3^n-2^{n+2}-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=10.3^n-2.2^{n-1}.5=10.3^n-10.2^{n-1}=10\left(3^n-2^{n-1}\right)\)
Chia hết cho 10
(l ike nha)