Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n phải khác 2
b) để A nguyên thì
1 chia hết cho 2-n
=> 2-n thuộc tập ước của 1
=> hoặc 2-n=1 =>n=1
hoặc 2-n=-1 =>n=3
hk tốt
a) Để A là phân số thì \(2-n\ne0\)
\(\Leftrightarrow n\ne2\)
b) Để A nguyên thì \(1⋮\left(2-n\right)\)
\(\Leftrightarrow2-n\inƯ\left(1\right)=\left\{\pm1\right\}\)
Lập bảng:
\(2-n\) | \(1\) | \(-1\) |
\(n\) | \(1\) | \(3\) |
Vậy n = 1 hoặc n = 3 thì A nguyên
Để A nhận giá trị nguyên thì n + 1 \(⋮\)n - 2
\(\Rightarrow\left(n-2\right)+3⋮n-2\)
\(\Rightarrow n+2\inƯ_{\left(3\right)}=\left\{\pm1;\pm3\right\}\)
Ta lập bảng :
n+2 | 1 | -3 | -1 | 3 |
n | -1 | -5 | -3 | 1 |
Vậy : n \(\in\left\{-5;-3;-1;1\right\}\)
Từ đề bài, ta suy ra:
\(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
Vì 1 \(\in\)Z nên để A nguyên thì 3\(⋮\)(n-2) hay (n-2)\(\in\) Ư(3)
<=> (n-2)\(\in\){-1;1;-3;3}
Xét các trường hợp:
Nếu n-2=-1<=> n=1
Nếu n-2=1<=> n=3
Nếu n-2=3<=> n=5
Nếu n-2=-3 thì n=-1
Vậy n\(\in\){1;3;5;-1}
a. Để \(A=\frac{2n-7}{n-5}\in Z\)thì \(n\in Z\)
\(A=\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}\)
\(=2+\frac{3}{n-5}\)
Để \(A\in Z\)thì \(\frac{3}{n-5}\)
\(\Rightarrow n-5\in\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{2;4;6;8\right\}\)
Để A là số nguyên
\(\Leftrightarrow n+1⋮n-2\)
\(\Leftrightarrow n-2+3⋮n-2\)
mà \(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
tự tìm n
\(A=\frac{n+1}{n-2}=\frac{\left(n-2\right)+3}{n-2}\)
\(=1+\frac{3}{n-2}\)
Để \(A\)là số nguyên thì \(1+\frac{3}{n-2}\in Z\)hay \(\frac{3}{n-2}\in Z\Rightarrow3⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\Rightarrow n\in\left\{-1;1;3;5\right\}.\)
để ps A nguyên thì n+3 chia hết cho n-2
suy ra (n-2)+5 chia hết cho n-2
suy ra 5 chia hết cho n-2
suy ra n-2 thuộc {1;-1;5;-5}
n thuộc {3;1;7;-3}
2)có 1/(a+1)+1/a.(a+1)=a.(a+1)/[(a+1).a.(a+1)]+(a+1)/[(a+1).a.(a+1)](nhân chéo)=a.(a+1)+(a+1)/a.(a+1).(a+1)=(a+1)(a+1)/a.(a+1).(a+1)=1/a
áp dụng :1/5=1/(5+1)+1/5.(5+1)=1/6+1/30
1.
A=\(\frac{n-2+5}{n+2}\)có công thức \(\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}\)
A=\(1+\frac{5}{n-2}\)
Ư(5)={-5;-1;1;5}
thay giô các kết quả
n-2=-5
n=-2 ( chọn)
n-2=-1
n= 1 (chọn)
n-2=1
n=3 (chọn)
n-2=5
n=7 (chọn)
vậy n= -2;1;3;7
2.
\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
ta biến đổi \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)thành \(\frac{1}{a}\)
ta thấy trong \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)có về 2 gấp vế trước a lần
ta quy đồng \(\frac{a}{a.\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a.\left(a+1\right)}\)cùng có a+1 ở tử và mẫu ta cùng gạch thì nó thành
\(\frac{1}{a}\)
vậy :\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
a. Tìm n để B tồn tại.
Để B tồn tại thì \(n-3\ne0\Leftrightarrow n\ne3\)
b. Tìm n để B là một số nguyên.
Để B là một số nguyên thì \(\frac{4}{n-3}\in Z\)
\(\Rightarrow n-3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Leftrightarrow n\in\left\{4;5;7;2;1;-1\right\}\)
Do đề bài không cho đk của n nên không thể giải theo cách thông thường là lập bảng xét ước được!
ĐK: n khác 6
a) Đặt \(\frac{n+9}{n-6}=k\left(k\inℕ\right)\Rightarrow n=kn-6k-9\)
\(\Leftrightarrow n\left(k-1\right)=6k+9\)
Với k = 1 thì \(0=6+9\) (vô lí)
Với k khác 1 thì chia hai vế cho k - 1 được: \(n=\frac{6k+9}{k-1}\left(k\inℕ\right)\)
b) \(\frac{n+9}{n-6}=\frac{3}{4}\Leftrightarrow n+9=\frac{3}{4}n-\frac{9}{2}\)
Chuyển vế,ta có: \(\frac{1}{4}n=-\frac{27}{2}\Rightarrow n=-54\)
c) \(\frac{n+9}{n-6}=1+\frac{15}{n-6}\).Để p/s tối giản thì \(\frac{15}{n-6}\) tối giản tức là:
\(\Leftrightarrow\left(15;n-6\right)=1\Leftrightarrow n-9⋮1\Leftrightarrow n=k+9\)
Câu c) mmình ko chắc
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
A = 3n - 6061/x - 2020
để A nguyên
=> 3x - 6061 chia hết cho x - 2020
=> 3x - 6060 - 1 chia hết cho x - 2020
=> 1 chia hết cho x - 2020
=> x - 2020 thuộc {-1; 1}
=> x - 2020 thuộc {2019; 2021}
a) \(A=\frac{n-5}{n+1}=\frac{n+1-6}{n+1}=1-\frac{6}{n+1}\)
=> A có giá trị nguyên <=> n + 1 \(\in\){ \(\pm1;\pm2;\pm3;\pm6\)}
b) Muốn cho \(\frac{n-5}{n+1}\)là phân số tối giản thì (n - 5,n + 1) = 1 . Ta biết rằng nếu (a,b) = 1 thì (a,a - b) = 1 , từ đó suy ra (n - 5,6) = 1
=> (n - 5) không chia hết cho ...(tự điền ra) hay n là số chẵn