Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có: AB//CD=>AK//IC(1)
có:
K là trung điểm AB;I Ià trung điểm CD=>AK=KB=DI=CI(2)
Từ (1) và (2) =>AKCI là HBH=> AI//KC
b,XÉt tam giác ABI có
AK=KB;AI//KN
=>MN=NB(1)
Xét tam giác DNC có
DI=IC;IM//NC
=>DM=MN(2)
Từ (1) và (2) => DM=MN=NB
Câu 1 :
Đặt \(n^2+2n+4=a^2\)
\(\Leftrightarrow\left(n+1\right)^2+3=a^2\)
\(\Leftrightarrow a^2-\left(n+1\right)^2=3\)
\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=3\)
TH1 \(\hept{\begin{cases}a+n+1=3\\a-n-1=1\end{cases}}\)
TH2 : \(\hept{\begin{cases}a+n+1=-3\\a-n-1=-1\end{cases}}\)
TH3 : \(\hept{\begin{cases}a+n+1=-1\\a-n-1=-3\end{cases}}\)
TH4 : \(\hept{\begin{cases}a+n+1=1\\a-n-1=3\end{cases}}\)
Bạn tính ra trong từng TH nhé !
Câu 1 :
Giả sử : \(n^2+2n+4=k^2\left(k\inℤ\right)\)
\(\Rightarrow k^2-\left(n^2+2n+1\right)=3\)
\(\Rightarrow k^2-\left(n+1\right)^2=3\)
\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=3\)
Do k + n + 1 > k - n - 1 ( với k;n thuộc Z )
\(\Rightarrow\hept{\begin{cases}k+n+1=3\\k-n-1=1\end{cases}}\Rightarrow\hept{\begin{cases}k+n=2\\k-n=2\end{cases}}\Rightarrow\hept{\begin{cases}k=2\\n=0\end{cases}}\)
Vậy n = 0
số tiếp theo là 460
124,236,348,460