K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

A = \(\dfrac{4\sqrt{x}+9}{2\sqrt{x}+1}\)

Mà \(4\sqrt{x}+9>0\)

\(2\sqrt{x}+1>0\)

=> A > 0

A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}\) = \(2+\dfrac{7}{2\sqrt{x}+1}\)

Mà \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)

<=> \(A\le9\)

<=> 0 < A \(\le9\)

Mà A thuộc Z

<=> A \(\in\){1;2;3;4;5;6;7;8;9}

Đến đây bn thay A vào để tìm x nhé

20 tháng 6 2021

A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}=2+\dfrac{7}{2\sqrt{x}+1}\)

Mà \(2\sqrt{x}+1>0< =>\dfrac{7}{2\sqrt{x}+1}>0\)

<=> A > 2

Có \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)

<=> \(A\le9\)

<=> 2 < A \(\le9\)

Mà A thuộc Z

<=> \(A\in\left\{3;4;5;6;7;8;9\right\}\)

Đến đây bn thay A vào để tìm x nhé

23 tháng 6 2021

A = \(\dfrac{6\sqrt{x}+8}{3\sqrt{x}+2}=2+\dfrac{4}{3\sqrt{x}+2}\)

Có \(3\sqrt{x}+2>0< =>\dfrac{4}{3\sqrt{x}+2}>0\) <=> A > 2

Có: \(3\sqrt{x}+2\ge2< =>\dfrac{4}{3\sqrt{x}+2}\le2\) <=> A \(\le4\)

<=> 2 < A \(\le4\)

Mà A nguyên

<=> \(\left[{}\begin{matrix}A=3\\A=4\end{matrix}\right.\)

TH1: A = 3

<=> \(\dfrac{4}{3\sqrt{x}+2}=1\)

<=> \(3\sqrt{x}+2=4< =>x=\dfrac{4}{9}\)

TH2: A = 4

<=> \(\dfrac{4}{3\sqrt{x}+2}=2< =>3\sqrt{x}+2=2< =>x=0\)

19 tháng 10 2020

Đề: Dẫn 17,92 lít khí hidro đi qua ống sứ m gam , 1 oxit sắt FexOy nung nóng sau phản ứng thu được 2,4*10^23 phân tử nước và hỗn hợp X gồm 2 chất rắng nặng 28.4 g

14 tháng 6 2021

`A=(2sqrtx+17)/(sqrtx+5)`

`=(2sqrtx+10+7)/(sqrtx+5)`

`=(2(sqrtx+5)+7)/(sqrtx+5)`

`=2+7/(sqrtx+5)`

`A in ZZ`

`=>7/(sqrtx+5) in ZZ`

`=>sqrtx+5 in Ư(7)={+-1,+-7}`

Mà `sqrtx+5>=5`

`=>sqrtx+5=7`

`=>sqrtx=2`

`=>x=4`

Vậy `x=4` thì `A in ZZ`

14 tháng 6 2021

làm pp chặn mà bạn

Câu 2: Cho biểu thức:1) Tìm điều kiện của x để biểu thức A có nghĩa .2) Rút gọn biểu thức A .3) Giải phương trình theo x khi A = -2 .Câu 3: Cho biểu thức:a) Với những giá trị nào của a thì A xác định.b) Rút gọn biểu thức A .c) Với những giá trị nguyên nào của a thì A có giá trị nguyên .Câu 4:a) Rút gọn biểu thức:b) Chứng minh rằng 0 ≤ C < 1Câu 5: Cho biểu thứca) Rút gọn Q.b) Tính giá trị...
Đọc tiếp

Câu 2: Cho biểu thức:

1) Tìm điều kiện của x để biểu thức A có nghĩa .

2) Rút gọn biểu thức A .

3) Giải phương trình theo x khi A = -2 .

Câu 3: Cho biểu thức:

a) Với những giá trị nào của a thì A xác định.

b) Rút gọn biểu thức A .

c) Với những giá trị nguyên nào của a thì A có giá trị nguyên .

Câu 4:

a) Rút gọn biểu thức:

b) Chứng minh rằng 0 ≤ C < 1

Câu 5: Cho biểu thức

a) Rút gọn Q.

b) Tính giá trị của Q khi a = 3 + 2√2.

c) Tìm các giá trị của Q sao cho Q < 0.

Câu 6: Cho biểu thức

a) Tìm điều kiện của x để P có nghĩa.

b) Rút gọn P.

c) Tìm các giá trị của x để P = 6/5.

Câu 7: Cho biểu thức

a) Tìm điều kiện của x để P có nghĩa.

b) Rút gọn P.

c) Tím các giá trị nguyên của x để P có giá trị nguyên.

Câu 8: Cho biểu thức

a) Rút gọn P.

b) Tìm các giá trị nguyên của x để P có giá trị nguyên.

c) Tìm GTNN của P và giá trị tương ứng của x.

Câu 9: Cho biểu thức

a) Rút gọn P.

b) Tìm các giá trị của x để P > 0.

c) Tính giá trị của P khi x = 7 - 4√3.

d) Tìm GTLN của P và giá trị tương ứng của x.

2
27 tháng 4 2018

sora béo chưa ghi biểu thức

27 tháng 4 2018

Biểu thức nào hả bn ?

25 tháng 8 2019

\(a,\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Rightarrow a^2+b^2+2ab\ge4ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\)( luôn đúng ) 

\(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

NV
12 tháng 1 2024

a.

FN là tiếp tuyến tại N \(\Rightarrow\widehat{FNO}=90^0\)

\(\Rightarrow\) 2 điểm P và N cùng nhìn OF dưới 1 góc vuông nên tứ giác ONFP nội tiếp đường tròn đường kính ON

b.

Trong tam giác MQF, do \(PQ\perp ME\) và \(MN\perp FQ\Rightarrow O\) là trực tâm

\(\Rightarrow FO\perp MQ\) tại D

Hai điểm D và N cùng nhìn MF dưới 1 góc vuông

\(\Rightarrow DNFM\) nội tiếp

\(\Rightarrow\widehat{FDN}=\widehat{FMN}\) (cùng chắn FN) (1)

Hai điểm D và P cùng nhìn OM dưới 1 góc vuông

\(\Rightarrow MDOP\) nội tiếp

\(\Rightarrow\widehat{FMN}=\widehat{FDP}\) (cùng chắn OP) (2)

(1);(2) \(\Rightarrow\widehat{FDP}=\widehat{FDN}\)

\(\Rightarrow DF\) là phân giác của \(\widehat{PDN}\)

c.

Do MN là đường kính và E thuộc đường tròn \(\Rightarrow\widehat{MEN}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{MEN}=90^0\Rightarrow NE\perp ME\)

Áp dụng hệ thức lượng trong tam giác vuông MNF với đường cao NE:

\(MN^2=ME.MF\Rightarrow\left(2R\right)^2=ME.MF\)

\(\Rightarrow ME.MF=4R^2\)

Từ đó áp dụng BĐT Cô-si ta có:

\(MF+2ME\ge2\sqrt{MF.2ME}=2\sqrt{8R^2}=4R\sqrt{2}\)

Dấu "=" xảy ra khi \(MF=2ME\Rightarrow E\) là trung điểm MF

\(\Rightarrow NE\) là trung tuyến ứng với cạnh huyền

\(\Rightarrow NE=\dfrac{1}{2}MF=ME\)

\(\Rightarrow E\) là điểm chính giữa cung MN

NV
12 tháng 1 2024

loading...