Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh đừng buồn bởi đây là những câu hỏi 0.5 đ ở cuối đề thi và có thể mấy bạn học sinh khá hay giỏi mới làm được đó là lớp 9 còn anh lớp 10 thì .... chắc quyên thôi ...
Câu 1:
PT \(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{2;3\right\}\)
Câu 2:
a) HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=10\\3x+4y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{5-x}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-5;5\right)\)
b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\y=2x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;-3\right)\)
Câu 5:
Đặt \(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có:
\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\)
Áp dụng bất đẳng thức Cosi ta có:
\(2xy\le\dfrac{\left(x+y\right)^2}{2}\le\dfrac{1}{2}\Rightarrow\dfrac{1}{2xy}\ge2\)
\(\Rightarrow P\ge6\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
5.
Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\Rightarrow0\le c\le1\Rightarrow1-\dfrac{c}{2}>0\)
\(P=bc+ca+ab\left(1-\dfrac{c}{2}\right)\ge0\)
\(P_{min}=0\) khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị
\(P=c\left(a+b\right)+ab\left(1-\dfrac{c}{2}\right)\le c\left(3-c\right)+\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)
\(P\le3c-c^2+\dfrac{\left(3-c\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)
\(P\le\dfrac{5}{2}-\dfrac{c^3}{8}+\dfrac{3c}{8}-\dfrac{1}{4}=\dfrac{5}{2}-\dfrac{1}{8}\left(c-1\right)^2\left(c+2\right)\le\dfrac{5}{2}\)
\(P_{max}=\dfrac{5}{2}\) khi \(a=b=c=1\)
Cách 2 phần tìm max bài 5:
Áp dụng BĐT: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow abc\ge-8abc+12\left(ab+bc+ca\right)-27\)
\(\Leftrightarrow3abc+27\ge12\left(ab+bc+ca\right)-6abc\)
\(\Leftrightarrow ab+bc+ca-\dfrac{1}{2}abc\le\dfrac{abc}{4}+\dfrac{9}{4}\le\dfrac{1}{4}.\left(\dfrac{a+b+c}{3}\right)^3+\dfrac{9}{4}=\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
C493
$\dfrac{a}{2b^3+1}=a.(1-\dfrac{2b^3}{2b^3+1})$
Áp dụng bđt Cauchy có: $b^3+b^3+1 \geq 3.\sqrt[]{b^3.b^3.1}=3b^2$
$⇒\dfrac{2b^3}{2b^3+1} \leq \dfrac{2b^3}{3b^2}=\dfrac{2b}{3}$
$⇒\dfrac{a}{2b^3+1} \geq a.(1-\dfrac{2b}{3})$
Tương tự ta có: $\dfrac{b}{2c^3+1} \geq b.(1-\dfrac{2c}{3})$
$\dfrac{c}{2a^3+1} \geq c.(1-\dfrac{2a}{3})$
Nên $B \geq a.(1-\dfrac{2b}{3})+b.(1-\dfrac{2c}{3})+c.(1-\dfrac{2a}{3})=a+b+c-\dfrac{2(ab+bc+ca)}{3}$
$ \geq \sqrt[]{3(ab+bc+ca)}-\dfrac{2.(ab+bc+ca)}{3}=1$
Dấu $=$ xảy ra $⇔a=b=c=1$
Vậy $MinB=1$ tại $a=b=c=1$
C889:
Áp dụng BĐT Cauchy-Schwars dạng Engel, ta có:
\(\dfrac{x^2}{y}+\dfrac{y^2}{x}\ge\dfrac{\left(x+y\right)^2}{x+y}=\dfrac{4^2}{4}=4\)
Dấu"=" xảy ra khi x=y=2
[Toán.C889 _ 29.4.2021]
A= \(\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy}\)
=\(\dfrac{4\left(16-3xy\right)}{xy}\)
=\(\dfrac{64}{xy}-12\)
mà xy\(\le\)4
nên \(\dfrac{64}{xy}\ge16\)
vậy A \(\ge\)16-12=4
dấu = xảy ra khi và chỉ khi x=y=2
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)=1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}\)
\(1+\frac{a}{c}+\frac{a}{b}+\frac{b^2+c^2}{bc}=1+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}\)
Áp dụng bất đẳng thức Cosi vào 3 số "1"; "\(\frac{b}{c}\)";"\(\frac{c}{b}\)" có:
1+\(\frac{b}{c}+\frac{c}{b}\ge3\sqrt{1.\frac{b}{c}.\frac{c}{b}}\ge3\)
Hay 1 + \(\frac{a^2}{bc}\ge3\:\)(*)
\(\Leftrightarrow\frac{a^2}{bc}\ge2\) (1)
Áp dụng bất đẳng thức Cosi vào 2 số "\(\frac{a}{c}\)";"\(\frac{a}{b}\)" có:
\(\frac{a}{c}+\frac{a}{b}\ge2\sqrt{\frac{a}{c}.\frac{a}{b}}=2\sqrt{\frac{a^2}{bc}}\) (2)
Từ (1),(2) suy ra: \(\frac{a}{c}+\frac{a}{b}\ge2\sqrt{2}\) (**)
Cộng (*),(**) vế theo vế ta có: \(1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}\ge3+2\sqrt{2}\)
Hay \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)\ge3+2\sqrt{2}\left(dpcm\right)\)
Đổi tên thành "Thử thách cuối tuần" chứ mấy bài này không giải trí mấy.
Bài 1:
Căng quá, đang đi cứu trợ :))
Bài 2:
Xét \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{1+y+z+yz}=\frac{yz+y+z+1+y-z}{\left(y+1\right)\left(z+1\right)}\)
\(=\frac{\left(y+1\right)\left(z+1\right)+y-z}{\left(y+1\right)\left(z+1\right)}=1+\frac{y-z}{\left(y+1\right)\left(z+1\right)}=1+\frac{\left(y+1\right)-\left(z+1\right)}{\left(y+1\right)\left(z+1\right)}=1+\frac{1}{z+1}-\frac{1}{y+1}\)
Vì vai trò của x, y, z là như nhau nên chứng minh tương tự với 3 phân thức còn lại ta cũng có:
\(\frac{y+2yz+1}{y+yz+yx+1}=1+\frac{1}{x+1}-\frac{1}{z+1}\)
\(\frac{z+2zx+1}{z+zx+zy+1}=1+\frac{1}{y+1}-\frac{1}{x+1}\)
Cộng theo vế 3 đẳng thức ta có:
\(P=1+1+1+\left(\frac{1}{x+1}-\frac{1}{x+1}\right)+\left(\frac{1}{y+1}-\frac{1}{y+1}\right)+\left(\frac{1}{z+1}-\frac{1}{z+1}\right)=3\)
Vậy....
Bài 3:
Vì tam giác ABC vuông tại A nên theo Pytago ta có:
\(a^2=b^2+c^2\Leftrightarrow a=\sqrt{b^2+c^2}\)
\(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)=1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}=1+a\cdot\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{b^2+c^2}{bc}\) (1)
Áp dụng BĐT Cô-si:
+) \(b^2+c^2\ge2bc\Leftrightarrow\frac{b^2+c^2}{bc}\ge2\Leftrightarrow\frac{b^2+c^2}{bc}+1\ge3\) (2)
+) \(\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}}\Leftrightarrow\left(\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{4}{bc}\) (3)
Từ (2) và (3) ta có: \(\left(b^2+c^2\right)\left(\frac{1}{b}+\frac{1}{c}\right)^2\ge2bc\cdot\frac{4}{bc}=8\)
\(\Leftrightarrow\sqrt{b^2+c^2}\cdot\left(\frac{1}{b}+\frac{1}{c}\right)\ge2\sqrt{2}\)
\(\Leftrightarrow a\cdot\left(\frac{1}{b}+\frac{1}{c}\right)\ge2\sqrt{2}\) (4)
Từ (1), (2) và (4) suy ra \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)\ge3+2\sqrt{2}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow b=c\) hay tam giác ABC vuông cân tại A.
\(\left\{{}\begin{matrix}x+2y=2\\mx-y=m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\2mx-2y=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2mx+x=2+2m\\x+2y=2\end{matrix}\right.\\ \left\{{}\begin{matrix}x\left(2m+1\right)=2\left(m+1\right)\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\\dfrac{2\left(m+1\right)}{2m+1}+2y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\2m+2+4my+2y=4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\y\left(4m+2\right)=2m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\y=\dfrac{2m}{4m+2}\end{matrix}\right.\\ thay.....x,y....vào....ta.....được\\ \dfrac{2\left(m+1\right)}{2m+1}+\dfrac{2m}{4m+2}=1\\ \Leftrightarrow\dfrac{4\left(m+1\right)}{4m+2}+\dfrac{2m}{4m+2}=\dfrac{4m+2}{4m+2}\\ \Rightarrow4m+4+2m=4m+2\\ \Leftrightarrow2m=-2\\ \Leftrightarrow m=-1\\ vậy...m=-1...thì...tm\) \(thay....m=3...vào...ta...có...hpt:\\ \left\{{}\begin{matrix}x+2y=2\\3x-y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\6x-2y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=8\\x+2y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8}{7}\\y=\dfrac{3}{7}\end{matrix}\right.\)
\(thay...m=3....ta...có:\\ \left\{{}\begin{matrix}x+2y=2\\3x-y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\6x-2y=6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=8\\x+2y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8}{7}\\y=\dfrac{3}{7}\end{matrix}\right.\\ vậy...với..m=3...thì...hệ....phương....trình....có...nghiệm...duy...nhất\left\{x=\dfrac{8}{7};y=\dfrac{3}{7}\right\}\)
tìm trc khi hỏi Câu hỏi của mai - Toán lớp 9 | Học trực tuyến
accc, mọi người , đây là ảnh chụp của mathtype hổng phải copy đâu nhaa