K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

huhu khocroi
Lớp 10 rồi mà vẫn không biết làm bất đẳng thức lớp 9  :'((

8 tháng 4 2021

Anh đừng buồn bởi đây là những câu hỏi 0.5 đ ở cuối đề thi và có thể mấy bạn học sinh khá hay giỏi mới làm được đó là lớp 9 còn anh lớp  10 thì .... chắc quyên thôi ...

Câu 1: 

PT \(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

 Vậy \(S=\left\{2;3\right\}\)

Câu 2:

a) HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=10\\3x+4y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{5-x}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)

 Vậy \(\left(x;y\right)=\left(-5;5\right)\)

b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\y=2x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

 Vậy \(\left(x;y\right)=\left(2;-3\right)\)

2 tháng 4 2021

Câu 5:

Đặt \(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có:

\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\)

Áp dụng bất đẳng thức Cosi ta có:

\(2xy\le\dfrac{\left(x+y\right)^2}{2}\le\dfrac{1}{2}\Rightarrow\dfrac{1}{2xy}\ge2\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

1 tháng 4 2021

5.

Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\Rightarrow0\le c\le1\Rightarrow1-\dfrac{c}{2}>0\)

\(P=bc+ca+ab\left(1-\dfrac{c}{2}\right)\ge0\)

\(P_{min}=0\) khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị

\(P=c\left(a+b\right)+ab\left(1-\dfrac{c}{2}\right)\le c\left(3-c\right)+\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)

\(P\le3c-c^2+\dfrac{\left(3-c\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)

\(P\le\dfrac{5}{2}-\dfrac{c^3}{8}+\dfrac{3c}{8}-\dfrac{1}{4}=\dfrac{5}{2}-\dfrac{1}{8}\left(c-1\right)^2\left(c+2\right)\le\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(a=b=c=1\)

1 tháng 4 2021

Cách 2 phần tìm max bài 5:

Áp dụng BĐT: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow abc\ge-8abc+12\left(ab+bc+ca\right)-27\)

\(\Leftrightarrow3abc+27\ge12\left(ab+bc+ca\right)-6abc\)

\(\Leftrightarrow ab+bc+ca-\dfrac{1}{2}abc\le\dfrac{abc}{4}+\dfrac{9}{4}\le\dfrac{1}{4}.\left(\dfrac{a+b+c}{3}\right)^3+\dfrac{9}{4}=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

21 tháng 3 2021

498undefined

21 tháng 3 2021

C493
$\dfrac{a}{2b^3+1}=a.(1-\dfrac{2b^3}{2b^3+1})$

Áp dụng bđt Cauchy có: $b^3+b^3+1 \geq 3.\sqrt[]{b^3.b^3.1}=3b^2$

$⇒\dfrac{2b^3}{2b^3+1} \leq \dfrac{2b^3}{3b^2}=\dfrac{2b}{3}$

$⇒\dfrac{a}{2b^3+1} \geq a.(1-\dfrac{2b}{3})$

Tương tự ta có: $\dfrac{b}{2c^3+1} \geq b.(1-\dfrac{2c}{3})$

$\dfrac{c}{2a^3+1} \geq c.(1-\dfrac{2a}{3})$

Nên $B \geq a.(1-\dfrac{2b}{3})+b.(1-\dfrac{2c}{3})+c.(1-\dfrac{2a}{3})=a+b+c-\dfrac{2(ab+bc+ca)}{3}$

$ \geq \sqrt[]{3(ab+bc+ca)}-\dfrac{2.(ab+bc+ca)}{3}=1$

Dấu $=$ xảy ra $⇔a=b=c=1$

Vậy $MinB=1$ tại $a=b=c=1$

C889:

Áp dụng BĐT Cauchy-Schwars dạng Engel, ta có:

\(\dfrac{x^2}{y}+\dfrac{y^2}{x}\ge\dfrac{\left(x+y\right)^2}{x+y}=\dfrac{4^2}{4}=4\)

Dấu"=" xảy ra khi x=y=2

29 tháng 4 2021

[Toán.C889 _ 29.4.2021]

A= \(\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy}\)

   =\(\dfrac{4\left(16-3xy\right)}{xy}\)

   =\(\dfrac{64}{xy}-12\)

mà xy\(\le\)4

nên \(\dfrac{64}{xy}\ge16\)

vậy A \(\ge\)16-12=4

dấu = xảy ra khi và chỉ khi x=y=2

GIẢI TRÍ CUỐI TUẦN CÙNG HOC24 Bài 1: Giải phương trình sau: \( \sqrt {16 - {x^2}} + \left( {x + 2} \right)\left| {\dfrac{2}{x} - 1} \right| = 4\sqrt {\dfrac{2}{x} - \dfrac{1}{{{x^2}}}} \\ \) Bài 2: Cho \(xyz=1\). Tính giá trị biểu thức sau: \(P = \dfrac{{x + 2xy + 1}}{{x + xy + xz + 1}} + \dfrac{{y + 2yz + 1}}{{y + yz + yx + 1}} + \dfrac{{z + 2zx + 1}}{{z + zx + zy + 1}}\) Bài 3: \(\Delta ABC\) vuông tại \(A\) có ba cạnh \(a,b,c\) (\(a-\) cạnh huyền)....
Đọc tiếp

GIẢI TRÍ CUỐI TUẦN CÙNG HOC24

Bài 1: Giải phương trình sau: \( \sqrt {16 - {x^2}} + \left( {x + 2} \right)\left| {\dfrac{2}{x} - 1} \right| = 4\sqrt {\dfrac{2}{x} - \dfrac{1}{{{x^2}}}} \\ \)

Bài 2: Cho \(xyz=1\). Tính giá trị biểu thức sau: \(P = \dfrac{{x + 2xy + 1}}{{x + xy + xz + 1}} + \dfrac{{y + 2yz + 1}}{{y + yz + yx + 1}} + \dfrac{{z + 2zx + 1}}{{z + zx + zy + 1}}\)

Bài 3: \(\Delta ABC\) vuông tại \(A\) có ba cạnh \(a,b,c\) (\(a-\) cạnh huyền). Chứng minh rằng: \(\left( {1 + \dfrac{a}{b}} \right)\left( {1 + \dfrac{a}{c}} \right) \geqslant 3 + 2\sqrt 2 \)

*LƯU Ý:

- Với những bài đưa ra ý tưởng hay được 1GP

- Với những lời giải đúng và trình bày bằng công thức được 2GP

- Loại bỏ những trường hợp sao chép (cũng tìm thử trên mạng có không nhé! Tại cũng chưa tìm)

- Không hạn chế số lượng bài gửi. Có nhiều cách gửi nhiều lần, đạt nhiều GP

CHÚC CÁC BẠN CUỐI TUẦN VUI VẺ, HỌC TẬP ĐẠT THÀNH TÍCH TỐT.

6
22 tháng 3 2020

Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)=1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}\)

\(1+\frac{a}{c}+\frac{a}{b}+\frac{b^2+c^2}{bc}=1+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}\)

Áp dụng bất đẳng thức Cosi vào 3 số "1"; "\(\frac{b}{c}\)";"\(\frac{c}{b}\)" có:

1+\(\frac{b}{c}+\frac{c}{b}\ge3\sqrt{1.\frac{b}{c}.\frac{c}{b}}\ge3\)

Hay 1 + \(\frac{a^2}{bc}\ge3\:\)(*)

\(\Leftrightarrow\frac{a^2}{bc}\ge2\) (1)

Áp dụng bất đẳng thức Cosi vào 2 số "\(\frac{a}{c}\)";"\(\frac{a}{b}\)" có:

\(\frac{a}{c}+\frac{a}{b}\ge2\sqrt{\frac{a}{c}.\frac{a}{b}}=2\sqrt{\frac{a^2}{bc}}\) (2)

Từ (1),(2) suy ra: \(\frac{a}{c}+\frac{a}{b}\ge2\sqrt{2}\) (**)

Cộng (*),(**) vế theo vế ta có: \(1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}\ge3+2\sqrt{2}\)

Hay \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)\ge3+2\sqrt{2}\left(dpcm\right)\)

22 tháng 3 2020

Đổi tên thành "Thử thách cuối tuần" chứ mấy bài này không giải trí mấy.

Bài 1:

Căng quá, đang đi cứu trợ :))

Bài 2:

Xét \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{1+y+z+yz}=\frac{yz+y+z+1+y-z}{\left(y+1\right)\left(z+1\right)}\)

\(=\frac{\left(y+1\right)\left(z+1\right)+y-z}{\left(y+1\right)\left(z+1\right)}=1+\frac{y-z}{\left(y+1\right)\left(z+1\right)}=1+\frac{\left(y+1\right)-\left(z+1\right)}{\left(y+1\right)\left(z+1\right)}=1+\frac{1}{z+1}-\frac{1}{y+1}\)

Vì vai trò của x, y, z là như nhau nên chứng minh tương tự với 3 phân thức còn lại ta cũng có:

\(\frac{y+2yz+1}{y+yz+yx+1}=1+\frac{1}{x+1}-\frac{1}{z+1}\)

\(\frac{z+2zx+1}{z+zx+zy+1}=1+\frac{1}{y+1}-\frac{1}{x+1}\)

Cộng theo vế 3 đẳng thức ta có:

\(P=1+1+1+\left(\frac{1}{x+1}-\frac{1}{x+1}\right)+\left(\frac{1}{y+1}-\frac{1}{y+1}\right)+\left(\frac{1}{z+1}-\frac{1}{z+1}\right)=3\)

Vậy....

Bài 3:

Vì tam giác ABC vuông tại A nên theo Pytago ta có:

\(a^2=b^2+c^2\Leftrightarrow a=\sqrt{b^2+c^2}\)

\(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)=1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}=1+a\cdot\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{b^2+c^2}{bc}\) (1)

Áp dụng BĐT Cô-si:

+) \(b^2+c^2\ge2bc\Leftrightarrow\frac{b^2+c^2}{bc}\ge2\Leftrightarrow\frac{b^2+c^2}{bc}+1\ge3\) (2)

+) \(\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}}\Leftrightarrow\left(\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{4}{bc}\) (3)

Từ (2) và (3) ta có: \(\left(b^2+c^2\right)\left(\frac{1}{b}+\frac{1}{c}\right)^2\ge2bc\cdot\frac{4}{bc}=8\)

\(\Leftrightarrow\sqrt{b^2+c^2}\cdot\left(\frac{1}{b}+\frac{1}{c}\right)\ge2\sqrt{2}\)

\(\Leftrightarrow a\cdot\left(\frac{1}{b}+\frac{1}{c}\right)\ge2\sqrt{2}\) (4)

Từ (1), (2) và (4) suy ra \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)\ge3+2\sqrt{2}\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow b=c\) hay tam giác ABC vuông cân tại A.

29 tháng 3 2021

\(\left\{{}\begin{matrix}x+2y=2\\mx-y=m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\2mx-2y=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2mx+x=2+2m\\x+2y=2\end{matrix}\right.\\ \left\{{}\begin{matrix}x\left(2m+1\right)=2\left(m+1\right)\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\\dfrac{2\left(m+1\right)}{2m+1}+2y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\2m+2+4my+2y=4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\y\left(4m+2\right)=2m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\y=\dfrac{2m}{4m+2}\end{matrix}\right.\\ thay.....x,y....vào....ta.....được\\ \dfrac{2\left(m+1\right)}{2m+1}+\dfrac{2m}{4m+2}=1\\ \Leftrightarrow\dfrac{4\left(m+1\right)}{4m+2}+\dfrac{2m}{4m+2}=\dfrac{4m+2}{4m+2}\\ \Rightarrow4m+4+2m=4m+2\\ \Leftrightarrow2m=-2\\ \Leftrightarrow m=-1\\ vậy...m=-1...thì...tm\)                         \(thay....m=3...vào...ta...có...hpt:\\ \left\{{}\begin{matrix}x+2y=2\\3x-y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\6x-2y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=8\\x+2y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8}{7}\\y=\dfrac{3}{7}\end{matrix}\right.\) 

 

 

 

 

 

 

 

\(thay...m=3....ta...có:\\ \left\{{}\begin{matrix}x+2y=2\\3x-y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\6x-2y=6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=8\\x+2y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8}{7}\\y=\dfrac{3}{7}\end{matrix}\right.\\ vậy...với..m=3...thì...hệ....phương....trình....có...nghiệm...duy...nhất\left\{x=\dfrac{8}{7};y=\dfrac{3}{7}\right\}\)

7 tháng 6 2017

tìm trc khi hỏi Câu hỏi của mai - Toán lớp 9 | Học trực tuyến

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang