Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
54n + 375
= (54)n +375
= 725n + 375
= (.....725) + 375
= ......1000
Vì 54n + 375 có 4 chữ số tận cùng là 1000 mà 1000 \(⋮\)1000
\(\Rightarrow\)54n + 375 \(⋮\)1000
TQuynh ơi !!! đề bài là : \(5^{4^n}\) nhé !! Lũy thừa tầng nha !!
Chứ ko pk là 54n
n3 + 3n2 + 2n
= n3 + n2 + 2n2 + 2n
= n2( n + 1 ) + 2n ( n + 1 )
= ( n + 1 )( n2 + 2n )
= n ( n + 1 ) ( n + 2 )
VÌ 6 = 2.3
n ( n + 1 ) ( n + 2 ) \(⋮\)2 ,3
=> n ( n + 1 ) ( n + 2 ) \(⋮\)6 ( ĐPCM )
hok tốt
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n^2+2n+n+2\right)\)
\(=n\left[n\left(n+2\right)+\left(n+2\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Vì \(n,n+1,n+2\)là 3 số thực liên tiếp \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)
\(n,n+1\)là 2 số thực liên tiếp \(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮2\)
mà \(\left(2;3\right)=1\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)
hay \(n^3+3n^2+2n⋮6\)
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-1\right)\left(n-2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)
c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)
2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Câu 1 .
A = 13 + 23 + 33 + ... + 1003
= 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100
= ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )
= ( 1 + 2 + 3 + .... + 100 )3
Do đó A \(⋮\)1 + 2 + 3 + ... + 100
Câu 2 :
+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)
Do đó 2100 có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751 ( 1)
+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)
Do đó 2100 có 3 chữ số tận cùng chia hết cho 8 ( 2)
Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376
Mà \(376\equiv1\left(mod125\right)\)
=> 2100 chia 125 dư 1
Vậy 2100 chia 125 có số dư là 1
Hok tốt
# owe
=2001^n+8^n.47^n+625^n
=(...001) + (8.47)^n+(...625)
=(...001)+(...376)+(...625)
=(...002)
\(C=2001^n+2^{3n}.47^n+25^{2n}\)
\(=2001^n+376^n+625^n\)
2001 đồng dư với 001 ( mod100 )
=> 2001n đồng dư với 001 ( mod100 )
376 đồng dư với 076 ( mod100 )
=> 376n đồng dư với 076 ( mod100 )
625 đồng dư với 025 ( mod100 )
=> 625n đồng dư với 025 ( mod100 )
=> 2001n + 376n + 625n đồng dư với 001 + 076 + 025 ( mod200 )
=> ........002 ( mod100 )
=> đpcm