Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n^2+2n+n+2\right)\)
\(=n\left[n\left(n+2\right)+\left(n+2\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Vì \(n,n+1,n+2\)là 3 số thực liên tiếp \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)
\(n,n+1\)là 2 số thực liên tiếp \(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮2\)
mà \(\left(2;3\right)=1\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)
hay \(n^3+3n^2+2n⋮6\)
2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-1\right)\left(n-2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)
c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)
\(\left(2n+3\right)^2-\left(2n-1\right)^2=4n^2+12n+9-4n^2+4n-1=16n+8=8\left(2n+1\right)⋮8\)
\(\left(2n+3\right)^2-\left(2n-1\right)^2\)
\(=\left(2n+3-2n+1\right)\left(2n+3+2n-1\right)\)
\(=4\left(4n-2\right)\)
\(=8\left(2x-1\right)\) Vì \(8⋮8\)
\(\Rightarrow8\left(2n-1\right)⋮(ĐPCM)\)
=2001^n+8^n.47^n+625^n
=(...001) + (8.47)^n+(...625)
=(...001)+(...376)+(...625)
=(...002)
\(C=2001^n+2^{3n}.47^n+25^{2n}\)
\(=2001^n+376^n+625^n\)
2001 đồng dư với 001 ( mod100 )
=> 2001n đồng dư với 001 ( mod100 )
376 đồng dư với 076 ( mod100 )
=> 376n đồng dư với 076 ( mod100 )
625 đồng dư với 025 ( mod100 )
=> 625n đồng dư với 025 ( mod100 )
=> 2001n + 376n + 625n đồng dư với 001 + 076 + 025 ( mod200 )
=> ........002 ( mod100 )
=> đpcm
Bài 2:
\(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)
\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left[n\left(n^2-4\right)+5n\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)⋮5\)
Bài 1:
a) Đặt \(6x+7=y\)
\(PT\Leftrightarrow y^2\left(y-1\right)\left(y+1\right)=72\)
\(\Leftrightarrow y^4-y^2-72=0\)
\(\Leftrightarrow\left(y^2-9\right)\left(y^2+8\right)=0\)
Mà \(y^2+8>0\left(\forall y\right)\)
\(\Rightarrow y^2-9=0\Leftrightarrow\left(y-3\right)\left(y+3\right)=0\Leftrightarrow\left(6x+4\right)\left(6x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}6x+4=0\\6x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{cases}}\)
b) đk: \(x\ne\left\{-4;-5;-6;-7\right\}\)
\(PT\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)
Bài 2 không tiện vẽ hình nên thôi nhờ godd khác:)
Bài 3:
Ta có:
\(a_n=1+2+3+...+n\)
\(a_{n+1}=1+2+3+...+n+\left(n+1\right)\)
\(\Rightarrow a_n+a_{n+1}=2\cdot\left(1+2+3+...+n\right)+\left(n+1\right)\)
\(=2\cdot\frac{n\left(n+1\right)}{2}+n+1\)
\(=n^2+n+n+1=\left(n+1\right)^2\)
Là SCP => đpcm
Bài giải :
8.1 x+y=xy
⇒x-xy+y=0
⇒x(1-y)+(y-1)+1=0
⇒(x-1)(1-y)+1=0
⇒(x-1)(y-1)-1=0
⇒(x-1)(y-1)=1
⇒x-1, y-1 là ước của 1
⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1
⇒(x;y)=(2;2),(0;0)
8.3. 5xy-2y²-2x²+2=0
⇔(x-2y)(y-2x)+2=0
⇔(x-2y)(2x-y)=2
⇒x-2y và 2x-y là ước của 2
\(A=\left(n^2+3n+2\right)\left(2n-1\right)-2\left(n^3-2n-1\right)\)
\(A=2n^3+6n^2+4n-n^2-3n-2-2n^3+4n+2\)
\(A=5n^2+5n\)
\(A=5n\left(n+1\right)\)
\(\text{Vì 5⋮5 nên 5n(n+1)⋮5}\)(1)
\(\text{Vì n;n+1 là hai số tự nhiên liên tiếp nên n(n+1)⋮2}\)
\(\Rightarrow5n\left(n+1\right)⋮2\)(2)
\(\text{Từ (1) và (2)}\Rightarrow5n\left(n+1\right)⋮10\text{ vì (2,5)=1}\)
\(\text{Vậy A⋮10}\)
n3 + 3n2 + 2n
= n3 + n2 + 2n2 + 2n
= n2( n + 1 ) + 2n ( n + 1 )
= ( n + 1 )( n2 + 2n )
= n ( n + 1 ) ( n + 2 )
VÌ 6 = 2.3
n ( n + 1 ) ( n + 2 ) \(⋮\)2 ,3
=> n ( n + 1 ) ( n + 2 ) \(⋮\)6 ( ĐPCM )
hok tốt