Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (2n+1,2n+3) là d. ĐK : \(d\inℕ^∗\)
Ta có : (2n+1,2n+3)=d
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\)(2n+3)-(2n+1)\(⋮\)d
\(\Rightarrow\)2\(⋮\)d
\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà 2n+1 là số nguyên lẻ nên \(d=\pm1\)
\(\Rightarrow\left(2n+1,2n+3\right)=\pm1\)
\(\Rightarrow\)2n+1 và 2n+3 là 2 số nguyên tố cùng nhau
\(\Rightarrow\)Phân số \(A=\frac{2n+1}{2n+3}\)tối giản với mọi số tự nhiên n (đpcm)
Đặt \(d=\left(x+1,2021x+2020\right)\).
Suy ra
\(\hept{\begin{cases}x+1⋮d\\2021x+2020⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2021x+2021⋮d\\2021x+2020⋮d\end{cases}}\Rightarrow\left(2021x+2021\right)-\left(2021x+2020\right)=1⋮d\)
suy ra \(d=1\).
Suy ra đpcm.
2x + 3 chia hết cho x - 1
=> 2x - 2 + 5 chia hết cho x - 1
=> 2(x - 1) + 5 chia hết cho x - 1
=> 5 chia hết cho x - 1
Gọi d là ƯCLN (2n+1; 2n+3) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
=> (2n+3)-(2n+1) \(⋮\)d
=> 2 \(⋮\)d
Mà d\(\inℕ^∗\)=> d={1;2}
Mà 2n+1 không chia hết cho 2
=> d=1
=> ƯCLN (2n+1;2n+3)=1
=> đpcm
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
hok tốt
\(\frac{5^{12}.3^9-5^{10}.3^{11}}{5^{10}.3^{10}}\)\(=\frac{5^{10}.3^9(5^2-3^2)}{5^{10}.3^{10}}\)\(=\frac{5^2-3^2}{3}\)\(=\frac{16}{3}\)
Chúc bạn học tốt!
con cặc là kết quả bạn nhé
học ngu vậy giốt ơi là giốt
\(https://olm.vn/hoi-dap/detail/569016799282.html \)bạn tham khảo ^_^