K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

\(222^{333}+333^{222}\)

\(=\left(222^3\right)^{111}+\left(333^2\right)^{111}⋮\left(222^3+333^2\right)=11051937⋮13\)

=> đpcm

Hằng đẳng thức: an - 1 = (a-1).[a(n-1) + a(n-2) +...+ 1] = (a-1).p (với n nguyên dương)
an + 1 = (a+1).[a(n-1) - a(n-2) +..+ 1] = (a+1).q (với n nguyên dương lẻ)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
222333 - 1 = (222 - 1).p = 13.17.p
333222 + 1 = (333²)111 + 1 = 110889111 + 1 = (110889 + 1).q = 13.8530.q
222333 + 333222 = 222333 - 1 + 333222 + 1 = 13(17.p + 8530.q) chia hết cho 13

K NHÉ

30 tháng 10 2020

Từ ac = b2 (1) => abc = b3

ab = c2 => abc = c3

=> b3 = c3 => b = c thay vào (1)

=> ab = b2 <=> (a - b).b = 0 <=>  \(\orbr{\begin{cases}a=b\\b=0\left(loại\right)\end{cases}}\)

=> a = b = c

Khi đó: P = \(\frac{a^{555}}{a^{222}.a^{333}}+\frac{b^{555}}{b^{222}.b^{333}}+\frac{c^{555}}{c^{222}.c^{333}}=1+1+1=3\)

11 tháng 1 2020

b, 5555\(\equiv\)4 (mod 7)=>55552222\(\equiv\)42222 (mod 7)(1)

2222\(\equiv\)3 (mod 7)=>2222=-4 (mod 7)=>22225555\(\equiv\)(-4)5555 (mod 7)(2)

Từ (1)  và  (2)=>55552222+22225555\(\equiv\)42222+45555 (mod 7)

                     =>55552222+22225555\(\equiv\)42222 (1-43333) (mod 7)

Ta có:43 \(\equiv\)1 (mod 7)

=>(43)1111\(\equiv\)11111 (mod 7)

=>43333\(\equiv\)1 (mod 7)

=>-43333\(\equiv\)-1(mod 7)

=>1-43333\(\equiv\)0 (mod 7)

=> 55552222+22225555\(\equiv\)0 (mod 7)

Vậy 55552222+22225555\(⋮\)7

Ta có:

5552≡5(mod 10)

5553≡5( mod 10)

5555=5552.5553≡5.5≡5(mod 10)

---> 555777≡5(mod 10)

Suy ra:

333555777đồng dư với 3335

Do 3335=3332.3333≡3(mod 10)

Vậy chữ số tận cùng của 333555777là 3 (1)

Làm tương tự với 777555333có chữ số tận cùng là 7 (2)

Từ (1) và (2) suy ra 333555777+777555333có chữ số tận cùng là 0

Vậy 333555777+777555333chia hết cho 10 (đpcm)

23 tháng 7 2015

 

a.2014100  + 201499

=201499.(2014+1)

=201499.2015

=> 2014100  + 201499 chia hết cho 2015

 b.31994 + 31993   31992 

=31992.(32+3-1)

=31992.11

=>31994 + 31993   31992 chia hết cho 11

c. 413 _ 325 _ 88

=(22)13-(25)5-(23)8

=226-225-224

=224.(22-2-1)

=224.5

=> 413 _ 325 _ 8chia hết cho 5

a)\(2014^{100}+2014^{99}=2014^{99}.\left(2014+1\right)=2014^{99}.2015⋮2015\left(\text{Đ}PCM\right)\)

b)\(3^{1994}+3^{1993}-3^{1992}=3^{1992}.\left(3^2+3-1\right)=3^{1992}.\left(9+3-1\right)=3^{1992}.11⋮11\left(\text{Đ}PCM\right)\)

c)\(4^{13}-32^5-8^8=\left(2^2\right)^{13}-\left(2^5\right)^5-\left(2^3\right)^8=2^{26}-2^{25}-2^{24}=2^{24}.\left(2^2-2-1\right)\)

Đề sai rồi bạn 2^14 luôn tận cùng chẵn =>2^14 không chia hết cho 5

Chúc bạn học tốt

25 tháng 2 2017

Ta có:

\(222^{333}+333^{222}=111^{333}.2^{333}+111^{222}.3^{222}\)

\(=111^{222}\left[\left(111.2^3\right)^{111}+\left(3^2\right)^{111}\right]\)

\(=111^{222}\left(888^{111}+9^{111}\right)\)

\(\Rightarrow888^{111}+9^{111}\)

\(=\left(888+9\right)\left(888^{110}-888^{109}.9+...-888.9^{109}+9^{110}\right)\)

\(=13.69.\left(888^{110}-888^{109}.9+...-9^{109}+9^{110}\right)\)

\(=13.69.Q\)

\(\Rightarrow222^{333}+333^{222}⋮13\) (Đpcm)

15 tháng 1 2022

(3133.299 - 3136.36) = [3133.(299 - 36)] = 3133.263 = 8064710111 , mà 8064710111 : 7 = 1152101444 => (3133.299 - 3136.36) chia hết cho 7.

15 tháng 1 2022

(3133.299 - 3136.36) = [3133.(299 - 36)] = 3133.263 = 8064710111 , mà 8064710111 : 7 = 1152101444 => (3133.299 - 3136.36) chia hết cho 7.

Mình ko chắc là đúng