K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2019

#)Giải :

\(\frac{91}{1.4}+\frac{91}{4.7}+\frac{91}{7.11}+...+\frac{91}{88.91}\)

\(=\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+...+\frac{3}{88.91}\right)\)

\(=\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{88}-\frac{1}{91}\right)\)

\(=\frac{91}{3}\left(1-\frac{1}{91}\right)\)

\(=\frac{91}{3}.\frac{90}{91}=30\left(đpcm\right)\)

         #~Will~be~Pens~#

28 tháng 5 2019

\(\frac{91}{1\cdot4}+\frac{91}{4\cdot7}+...+\frac{91}{88\cdot91}=\frac{1}{3}\left(91-\frac{91}{4}+\frac{91}{4}-\frac{91}{7}+...-\frac{91}{91}\right)\)

\(=\frac{1}{3}\left(91-1\right)=\frac{1}{3}\cdot90=30\)

17 tháng 8 2020

a) \(\frac{91}{1.4}+\frac{91}{4.7}+...+\frac{91}{88.91}=\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{88.91}\right)\)

\(=\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{88}-\frac{1}{91}\right)=\frac{91}{3}\left(1-\frac{1}{91}\right)=\frac{91}{3}.\frac{90}{91}=30\left(\text{đpcm}\right)\)

1 tháng 5 2015

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{2010.2013}\right)\)

\(=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{2010}-\frac{1}{2013}\right)\)

\(=\frac{1}{3}\left(1-\frac{1}{2013}\right)=\frac{1}{3}.\frac{2012}{2013}<\frac{1}{3}.1=\frac{1}{3}\)

13 tháng 12 2018

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+..........+\frac{2}{97.100}=\frac{3}{2}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........-\frac{1}{100}\right)\)

\(=\frac{3}{2}\times\frac{99}{100}=\frac{297}{200}\)

13 tháng 12 2018

2/3( giong cai tren nha)

=2/3.99/100=198/300 nha

3 tháng 3 2020

P/s : nhìn thì khủng thật ! :v

\(B=81.\left[\frac{\left[12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}\right]}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right].\frac{158158158}{711711711}\)

\(B=81.\left[\frac{12.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right].\frac{158}{711}\)

\(B=81.\left(\frac{3}{1}:\frac{5}{6}\right).\frac{158}{711}\)

\(B=81.\frac{18}{5}.\frac{158}{711}\)

\(B=\frac{1458}{5}.\frac{158}{711}=\frac{324}{5}\)

Vậy  \(B=\frac{324}{5}\)

Cậu tính từng bước là ra thui

\(B=81.\left(\frac{12-\frac{12}{7}-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right).\frac{158158158}{711711711}\)

\(\Leftrightarrow B=81.\left(\frac{12\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right).\frac{158\left(1001001\right)}{711\left(1001001\right)}\)

\(\Leftrightarrow B=81\left(\frac{12}{3}:\frac{5}{6}\right).\frac{158}{711}\)

\(\Leftrightarrow B=81\left(3.\frac{6}{5}\right).\frac{2}{9}\)

\(\Leftrightarrow B=81.\frac{18}{5}.\frac{2}{9}\)

\(\Leftrightarrow B=\frac{324}{5}\)

Hok tốt!!

22 tháng 4 2016

Ta có:

    A=1/1.3+2/3.7+3/7.13+...+10/91.111

=>2A=2/1.3+4/3.7+6/7.13+...+20/91.111

=>2A=1-1/3+1/3-1/7+1/7-1/13+...+1/91-1/111

=>2A=1-1/111=110/111

=>A=55/111

Vậy A=55/111

OK!

8 tháng 4 2017

\(A=\frac{1}{1.4}+\frac{1}{2.7}+...+\frac{1}{67.70}\)

\(3A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{67.70}\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{67}-\frac{1}{70}\)

\(3A=1-\frac{1}{70}=\frac{69}{70}\)

\(A=\frac{69}{70}:3=\frac{23}{70}\)

vì \(\frac{23}{70}< 1\)

nên \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{67.70}< 1\)

8 tháng 4 2017

Vì nó bé hơn 1

5 tháng 4 2016

\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)

\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{8}\right)-\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)