Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(=\frac{1}{1.3}-\frac{1}{11.13}\)
\(=\frac{1}{3}-\frac{1}{143}\)
\(=\frac{140}{429}\)
a) A = 1/3 - 1/7 + 1/7 - 1/11 +......+1/107 - 1/111
A = 1/3 - 1/111
A = ..............Bạn tự tính nhé!
b) B = 2.(3/15.18 + 3/18.21 +........+3/87.90)
B = 2.(1/15 - 1/18 + 1/18 - 1/21 +........+1/87 - 1/90)
B = 2.(1/15 - 1/90)
B = 2.5/90
B =......Tự tính nhé!
C ; D làm tương tự nhé!
Bài 1 :
a) =) \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)= \(1-\frac{1}{101}=\frac{100}{101}\)
b) =) \(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=) \(\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)( theo phần a)
Bài 2 :
-Gọi d là UCLN \(\left(2n+1;3n+2\right)\)( d \(\in N\)* )
(=) \(2n+1⋮d\left(=\right)3.\left(2n+1\right)⋮d\)
(=) \(6n+3⋮d\)
và \(3n+2⋮d\left(=\right)2.\left(3n+2\right)⋮d\)
(=) \(6n+4⋮d\)
(=) \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
(=) \(6n+4-6n-3⋮d\)
(=) \(1⋮d\left(=\right)d\in UC\left(1\right)\)(=) d = { 1;-1}
Vì d là UCLN\(\left(2n+1;3n+2\right)\)(=) \(d=1\)(=) \(\frac{2n+1}{3n+2}\)là phân số tối giản ( đpcm )
Bài 3 :
-Để A \(\in Z\)(=) \(n+2⋮n-5\)
Vì \(n-5⋮n-5\)
(=) \(\left(n+2\right)-\left(n-5\right)⋮n-5\)
(=) \(n+2-n+5⋮n-5\)
(=) \(7⋮n-5\)(=) \(n-5\in UC\left(7\right)\)= { 1;-1;7;-7}
(=) n = { 6;4;12;-2}
Vậy n = {6;4;12;-2} thì A \(\in Z\)
Bài 4:
A = \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
= \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
= \(10101.\left(\frac{1}{111111}+\frac{5}{222222}\right)\)= \(10101.\left(\frac{2}{222222}+\frac{5}{222222}\right)\)
= \(10101.\frac{7}{222222}\)( không cần rút gọn \(\frac{7}{222222}\))
= \(\frac{7}{22}\)
\(A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)
\(A=1-\frac{1}{16}=\frac{15}{16}\)
A = \(\frac{3^2}{1\cdot4}+\frac{3^2}{4\cdot7}+\frac{3^2}{7\cdot10}+\frac{3^2}{10\cdot13}+\frac{3^2}{13\cdot16}+...+\frac{3^2}{97\cdot100}\)
A : 3 = \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}+...+\frac{3}{97\cdot100}\)
A : 3 = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{97}-\frac{1}{100}\)
A : 3 = \(\frac{1}{1}-\frac{1}{100}\)
A : 3 = \(\frac{99}{100}\)
A = \(\frac{297}{100}\)
A=\(2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\right)\)
A=\(2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)
A=\(2.\left(1-\frac{1}{13}\right)\)
A=\(2.\frac{12}{13}=\frac{24}{13}\)
A=2(2/1.3+2/3.5+2/5.7+...+2/11.13)
A=2(1/1-1/3+1/3-1/5+1/5-1/7+...+1/11-1/13)
A=2(1/1-1/13)=2.12/13=24/13
\(\frac{4}{3\cdot7}+\frac{5}{7\cdot12}+\frac{1}{12\cdot13}+\frac{7}{13\cdot20}+\frac{3}{20\cdot23}\)
\(\frac{4}{3.7}+\frac{5}{7.12}+\frac{1}{12.13}+\frac{7}{13.20}+\frac{3}{20.23}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{20}-\frac{1}{23}=\frac{1}{3}-\frac{1}{23}=\frac{20}{69}\)
ta có: \(\frac{2^5.7+2^5}{2^5.2^5-2^5.3}=\frac{2^5.\left(7+1\right)}{2^5.\left(2^5-3\right)}=\frac{8}{2^5-3}=\frac{8}{29}=\frac{104}{377}\)
\(\frac{3^4.5.\left(-3\right)^6}{3^4.13.3^4}=\frac{3^{10}.5}{3^8.13}=\frac{3^2.5}{13}=\frac{45}{13}=\frac{1305}{377}\)
\(\Rightarrow\frac{104}{377}< \frac{1305}{377}\Rightarrow\frac{2^5.7+2^5}{2^5.2^5-2^5.3}< \frac{3^4.5.\left(-3\right)^6}{3^4.13.3^4}\)
Ta cứ tính ra tử số và mỗi số của từng phân số ra nhé Jerry Gaming:
\(\frac{2^5.7+2^5}{2^5.2^5-2^5.3}\)= \(\frac{2^5.\left(7+1\right)}{2^5.\left(2^5-3\right)}=\frac{2^5.8}{2^5.\left(32-3\right)}=\frac{32.8}{2^5.29}=\frac{32.8}{32.29}=\frac{8}{29}\)
\(\frac{3^4.5.\left(-3\right)^6}{3^4.13.3^4}\)= \(\frac{3^4.5.3^6}{3^8.13}=\frac{3^{10}.5}{3^8.13}=\frac{3^2.5}{13}=\frac{9.5}{13}=\frac{45}{13}\)
\(\frac{8}{29}\)và \(\frac{45}{13}\)MSC: 377
Ta có:
\(\frac{8}{29}=\frac{8.13}{29.13}=\frac{104}{377}\)
\(\frac{45}{13}=\frac{45.29}{13.29}=\frac{1305}{377}\)
Vậy quy đồng \(\frac{2^5.7+2^5}{2^5.2^5-2^5.3}\)và \(\frac{3^4.5.\left(-3\right)^6}{3^4.13.3^4}\)ta được \(\frac{104}{377}\)và \(\frac{1305}{377}\)
Chúc bạn học tốt!
Ta có:
A=1/1.3+2/3.7+3/7.13+...+10/91.111
=>2A=2/1.3+4/3.7+6/7.13+...+20/91.111
=>2A=1-1/3+1/3-1/7+1/7-1/13+...+1/91-1/111
=>2A=1-1/111=110/111
=>A=55/111
Vậy A=55/111
OK!