Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời cảu em là:
Từ một cách làm nào đó mà đúng suy ra ĐPCM
(Hi hi, **** cho em nha)
Bổ đề: Số lập phương bất kì khi chia cho 7 thì dư 0, 1, 6 (*)
+) Xét abc chia hết cho 7 thì hiển nhiên ta có điều phải chứng minh
+) Xét abc không chia hết cho 7 thì trong ba số a, b, c không có số nào chia hết cho 7 suy ra \(a^3,b^3,c^3\)không chia hết cho 7
Theo bổ đề (*) thì \(a^3,b^3,c^3\)chia 7 dư 1 hoặc 6
Có 3 số mà chỉ có 2 số dư nên theo nguyên lý Dirichlet thì có ít nhất hai số cùng số dư do đó hiệu của chúng chia hết cho 7
Vậy \(abc\left(a^3-b^3\right)\left(b^3-c^3\right)\left(c^3-a^3\right)⋮7\left(đpcm\right)\)
Một số lập phương khi chia cho 7 có số dư là 0, 1, hoặc 6. Nên nếu abc không chia hết cho 7 thì ít nhất 2 trong 3 số a^3, b^3, và c^3 phải cùng số dư khi chia cho 7.
Suy ra dpcm
tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'<
Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)
\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)
Tương tự cộng lại ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé
Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)
Tương tự cộng lại ra đpcm
Để ý rằng a, b, c > 0 nên abc > 0, khi đó chia hai vế của bđt cho abc thì sẽ xuất hiện \(\frac{1}{a};\frac{1}{b};\frac{1}{c}\). Đặt ẩn phụ + biến đổi + Cô si cho 6 số thì bài toán đâu đến nổi khó ...
BĐT \(\Leftrightarrow\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\frac{8}{abc}\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\). Bài toán trở thành:
Cho x, y, z > 0 thỏa mãn x + y + z = 3. Chứng minh:
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge8xyz\)
Nhân hai vế của BĐT với 27, ta cần chứng minh:
\(\left(3x+3\right)\left(3y+3\right)\left(3z+3\right)\ge216xyz\)
\(\Leftrightarrow\left(x+x+x+x+y+z\right)\left(y+y+y+x+y+z\right)\left(z+z+z+x+y+z\right)\ge216xyz\)
Đơn giản chưa:v Cô si cho 6 số ở mỗi cái ngoặc là ra:D Cách này mà sai thì em chịu đấy nhé;) Tự c/m Cô si cho 6 số.
Nhân 8 vào hai vế:
Cần chứng minh \(\left(x+y\right)\left(y+z\right)\left(z+x\right).2x.2y.2z\le\frac{64}{729}\)
Áp dụng BĐT Cô si ngược cho 6 số dương (tự c/m:v) vào VT ta có đcpm.
Đẳng thức xảy ra khi x = y = z = 1/3
Áp dụng bất đẳng thức Cauchy ngược là sao ạ? Bạn ví dụ cụ thể với....