Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dự đoán xảy ra cực trị tại y = 2 và x = 1
Ta biến đổi nhưng sau: \(P=\left(8x^3+8+8\right)+\left(y^3+8+8\right)-32\)
\(\ge3\sqrt[3]{8x^3.8.8}+3\sqrt[3]{y^3.8.8}-32\)
\(=24x+12y-32=12\left(2x+y-\frac{8}{3}\right)\)
\(=12\left(6-\frac{8}{3}-xy\right)=12\left(\frac{10}{3}-xy\right)\)
\(=12\left(\frac{10}{3}-1x.2y\right)\ge12\left(\frac{10}{3}-\frac{\left(x+1\right)^2}{4}.\frac{\left(y+2\right)^2}{4}\right)\)
\(=12\left(\frac{10}{3}-\frac{\left[\left(x+1\right)\left(y+2\right)\right]^2}{4}\right)\)
\(=12\left(\frac{10}{3}-\frac{xy+2x+y+2}{4}\right)=12\left(\frac{10}{3}-\frac{6+2}{4}\right)=16\)
Vậy P min = 16 khi x = 1;y=2
1 mặt trời được hình thành từ lava và thiên thạch
2 muốn bt mặt trời nặng bao nhiêu thì mẹ hãy cho con bt cân nặng của trái đất và con người
3 có hoặc ko
4 có số miệng núi lửa bằng số cây trên trái đất
5 vì áp suất của ngoài vũ trụ chỉ cho phép toàn bộ hình tròn
6 có vì các điều đó đều là sự thật
7 trái đất được tạo từ thiên thạch
8 vì trái đất là một hành tinh đặc bt như mẹ vậy
9 vậy con người hãy ngừng hoạt động các nhà máy
10 vì thiên nhiên giúp ta có thể sống , thở,....
mọi người có lắng nghe được vì mọi tiếng ồn của tự nhiên đều là lời nói của thiên nhiên
Áp dụng BĐT cosi cho 3 số x;y;z dương
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}\ge2\sqrt{\dfrac{x^2y^2}{y^2z^2}}=\dfrac{2x}{z}\\ \dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{y^2z^2}{x^2z^2}}=\dfrac{2y}{z}\\ \dfrac{x^2}{y^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{x^2z^2}{x^2y^2}}=\dfrac{2z}{y}\)
Cộng vế theo vế
\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)\ge2\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\)
\(\LeftrightarrowĐpcm\)
Cám ơn thầy ạ, tuy nhiên hình như là có sự nhầm lẫn rồi thầy ạ, bài này thầy xem lại đề bài giúp em với ạ
Ta có:
\(VT=\sqrt{x+z}\sqrt{\dfrac{x}{\left(x+y\right)\left(x+z\right)}}+\sqrt{x+y}\sqrt{\dfrac{y}{\left(x+y\right)\left(y+z\right)}}+\sqrt{y+z}\sqrt{\dfrac{z}{\left(x+z\right)\left(y+z\right)}}\)
\(\Rightarrow VT^2\le\left(x+z+x+y+y+z\right)\left(\dfrac{x}{\left(x+y\right)\left(x+z\right)}+\dfrac{y}{\left(x+y\right)\left(y+z\right)}+\dfrac{z}{\left(x+z\right)\left(y+z\right)}\right)\)
\(\Rightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Mặt khác ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)
\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\dfrac{1}{3}\left(x+y+z\right).\dfrac{1}{3}\left(xy+yz+zx\right)\)
\(=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(\Rightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+zx\right)}{\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\dfrac{9}{2}\)
\(\Rightarrow VT\le\dfrac{3\sqrt{2}}{2}\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z\)