K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

A B C M N K

a, góc  MAB = góc CAN = 60 do tam giác ABM và ACN đều (gt)

góc MAB + góc BAC = góc MAC 

góc CAN + góc BAC = góc BAN 

=> góc MAC = góc BAN 

xét tam giác MAC và tam giác BAN có : MA = AB do tam giác MAB đều (gt)

AN = AC do tam giác CAN đều (gt)

=> tam giác MAC = tam giác BAN

=> CM = BN (ĐN)

16 tháng 2 2020

b) Theo câu a ta có  Δ AMC=ΔABN

=> \(\widehat{AMC}=\widehat{ABN}\)

Hay \(\widehat{AMC}=\widehat{ABK}\)

Ta có \(\widehat{BKC}\) là góc ngoài tại đỉnh K của Δ MKB

⇒ \(\widehat{BKC}=\widehat{MBK}+\widehat{BMK}\)  ( tính chất góc ngoài )

⇒ \(\widehat{BKC}=\widehat{MBA}+\widehat{ABK}+\widehat{BMK}\)

\(\Rightarrow\widehat{BKC}=\widehat{MBA}+\widehat{AMB}\)

\(\Rightarrow\widehat{BKC}=60^o+60^o=120^o\)

+) Trên tia MK lấy điểm N sao cho KB = KN  

+) Lại có \(\widehat{NKB}+\widehat{CKB}=180^o\)  ( 2 góc kề bù )

\(\Rightarrow\widehat{NKB}+120^o=180^o\)

\(\Rightarrow\widehat{NKB}=60^o\)

+) Xét Δ NKB có 

\(\hept{\begin{cases}\widehat{NKB}=60^o\\KB=KN\end{cases}}\)  ( cmt và cách dựng )

⇒Δ NKB đều

⇒ \(\widehat{NKB}=60^o\)

( tính chất tam giác đều )

Hay \(\widehat{MKB}=60^o\)

@@ Học tốt

25 tháng 3 2020

a) Ta có: tam giác AMB đều => góc MAB = 60o 

              tam giác ANC đều => góc NAC = 60o

 Suy ra: góc MAN = \(\widehat{MAB}\)+\(NAC\)+\(BAC\)= 60o+60o+60o=180

<=> M,A,N thẳng hàng

b) Xét tam giác MAC và tam giác BAN, ta có:

AM=AB (tam giac BAM đều)

\(\widehat{MAC}\)\(\widehat{BAN}\)= 120o

AC = AN ( tam giác ANC đều)

=> tam giác MAC = tam giác BAN (c-g-c)

=> BN=CM (2 cạnh tương ứng)

6 tháng 4 2020

a) Ta có : \(\Delta\) MAB đều => góc MAB = 60 \(^0\)

\(\Delta\)ACN đều => góc CAN = 60 \(^0\)

Ta lại có :góc MAN = \(\widehat{BAC}+\widehat{MAB}+\widehat{CAN}\)=60\(^0\)+60\(^0\)+60\(^0\)

= > 3 điểm A,M,N thẳng hàng (đpcm)

23 tháng 10 2016

vuong thi minh anh            

9 tháng 1 2017

vuong thi minh anh

26 tháng 12 2019

Giúp mình với! Sáng nay phải nộp rồi