K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

undefined

20 tháng 4 2017

∆AHB và ∆ CKD có:

HB=KD.

AHB^=CKD^

AH=Ck

Nên ∆ AHB = ∆ CKD(c.g.c)

suy ra AB=CD.

tương tự ∆ CEB = ∆ AFD(c.g.c)

suy ra BC=AD.

b) ∆ABD và ∆CDB có:

AB=CD(câu a)

BC=AD(câu a)

BD chung.

Do đó ∆ABD=∆CDB(c.c .c)

Suy ra ˆABD=CDB^

Vậy AB // CD( hai góc so le trong bằng nhau)



4 tháng 1 2016

có hình đâu mà giải thick

TICK

4 tháng 1 2016

Dùng định lý Py-ta-go nhé !

Xét ∆AHB và ∆ CKD có:

HB=KD.

ˆAHB=ˆCKD

AH=CK

=> ∆ AHB = ∆ CKD(c.g.c)

=> AB=CD.( 2 canh tương ứng)

tương tự ∆ CEB = ∆ AFD(c.g.c)

=> BC=AD.

b) ∆ABD và ∆CDB có:

AB=CD(CMT)

BC=AD(CMT)

BD chung.

=> ∆ABD=∆CDB(c.c .c)

=> ˆABD^=ˆCDB( 2 góc tương ứng)

=> AB // CD( hai góc so le trong bằng nhau)

CT
3 tháng 3 2022

Em bổ sung hình để các bạn giúp nhé

9 tháng 1 2017

Giải bài 45 trang 125 Toán 7 Tập 1 | Giải bài tập Toán 7

+ ΔAHB và ΔCKD có

      HB = KD (=1)

      góc AHB = góc CKD(=90º)

      AH = CK (=3).

⇒ ΔAHB = ΔCKD(c.g.c)

⇒AB = CD (hai cạnh tương ứng)

+ ΔCEB và ΔAFD có

      BE = DF (=2)

      góc BEC = góc DFA (=90º)

      CE = AF (=4).

⇒ ΔCEB = ΔAFD ( c.g.c)

⇒ BC = AD (hai cạnh tương ứng)

9 tháng 2 2019

ΔABD và ΔCDB có

      AB = CD

      AD = BC

      BD cạnh chung

⇒ ΔABD = ΔCDB (c.c.c)

⇒ góc ABD = góc CDB (hai góc tương ứng)

Vậy AB // CD ( hai gó so le trong bằng nhau )

1 tháng 5 2019

a, xét 2 tam giác vuông AEC và AED có:

            AC=AD(gt)

            AE cạnh chung

=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)

=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)

b, xét t.giác AIC và t.giác AID có:

           AI cạnh chung

         \(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)

          AC=AD(gt)

=> t.giác AIC=t.giác AID(c.g.c)

=> IC=ID=> I là trung điểm của CD(1)

\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)

từ (1) và (2) suy ra AE là trung trực của CD

A B C D E I

a) Xét tam giac AMB và tam giac AMC

có           AB=AC

AM chung

BM=CM

suy ra tam giac BMA= tam giac CMA

b) Xét tam giac DAM va tam giac CMA

co            AM chung

            góc DAM= goc CMA( do DA//MC

           AMD=CAM

=)  TAM GIAC DAM= TAM GIAC CMA

=)DA= CM