K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

a, xét 2 tam giác vuông AEC và AED có:

            AC=AD(gt)

            AE cạnh chung

=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)

=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)

b, xét t.giác AIC và t.giác AID có:

           AI cạnh chung

         \(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)

          AC=AD(gt)

=> t.giác AIC=t.giác AID(c.g.c)

=> IC=ID=> I là trung điểm của CD(1)

\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)

từ (1) và (2) suy ra AE là trung trực của CD

A B C D E I

Bài 3: Cho tam giác ABC (AB < AC). Gọi I là trung điểm của BC. Qua điểm I vẽ đường thẳng vuông góc với BC cắt tia phân giác của tại M.1.    Chứng minh MB = MC.2.    Kẻ MH vuông góc với đường thẳng AB, kẻ MK vuông góc với đường thẳng AC. Chứng minh MH = MK.3.    Chứng minh AC – AB = 2.KC.Bài 4: Cho △ABC cân tại A. Từ B và C kẻ đường thẳng vuông góc với AB và AC, chúng cắt nhau tại I.1.   ...
Đọc tiếp

Bài 3Cho tam giác ABC (AB < AC). Gọi I là trung điểm của BC. Qua điểm I vẽ đường thẳng vuông góc với BC cắt tia phân giác của tại M.

1.    Chứng minh MB = MC.

2.    Kẻ MH vuông góc với đường thẳng AB, kẻ MK vuông góc với đường thẳng AC. Chứng minh MH = MK.

3.    Chứng minh AC – AB = 2.KC.

Bài 4: Cho △ABC cân tại A. Từ B và C kẻ đường thẳng vuông góc với AB và AC, chúng cắt nhau tại I.

1.    Chứng minh IB = IC.

2.    Lấy M là trung điểm của AI. Chứng minh MB = MC.

3.    Chứng minh AI vuông góc với BC.

Bài 5Cho △ABC. Phân giác góc A và góc B cắt nhau tại I. Kẻ IM ⊥ AB (M∈AB), kẻ IN ⊥ BC (N∈BC), kẻ IQ ⊥ AC (Q∈ AC).

1.    Chứng minh △IMA = △IQA;

2.    Chứng minh IM = IN = IQ.

Bài 6Cho tam giác ABC vuông tại A. Tia phân giác của cắt AC tại D. Kẻ DK vuông góc với BC.

1.    Chứng minh DA = DK.

2.    Kẻ AH vuông góc với BC. Chứng minh tia AK là phân giác của .

Bài 10: Cho tam giác ABC, AH vuông góc với BC, AH = 12cm, AB = 15cm, CH = 16cm.

1.    Tính độ dài BH, AC.

2.    Tam giác ABC là tam giác vuông hay không? Vì sao?

giải nhanh giùm mk

0
1 tháng 1 2021

A B C D F A B C D F A B C D E F H K a. CM AB=AF

Vì BE cắt AC tại F mà BE vuông góc AD tại E nên AE vuông góc BF 

Xét tam giác AEB và tam giác AEF có

\(\widehat{BAE}=\widehat{FAE}\)(phân giác góc A cắt BC tại D)

AE chung

\(\widehat{AEB}=\widehat{AEF}\)(AE vuông góc BF)

=> tam giác AEB=tam giác AEF (g.c.g)

=>AB=AF(2 cạnh tương ứng)

b.Ta có HF // DK (đường thẳng đi qua F (gọi là a)cắt AE tại H nên H thuộc a ; a//BC mà D,K thuộc BC)

xét tứ giác HFKD :HF // DK(cmt);HF=DK (gt) 

=>HFKD là hình bình hành (dhnb)

Nên DH=FK,DH//FK (t/c)

c. Vì AB <AC nên góc ABC > góc C (Cái này là lí thuyết ) 

19 tháng 2 2020

Chuẩn

là sao bạn phương linh

29 tháng 2 2020

Xét tam giác ADB và tam giác ACD

có AB=AC (tam giác ABC cân tại A)

AD chung

góc ABD = góc ACD = 90độ

suy ra tam giác ADB = tam giác ACD (cạnh huyền-cạnh góc vuông)

suy ra BD=DC (hai cạnh tương ứng)  (1)

b) Từ (1) suy ra D thuộc đường trung trực của BC (2)

mà tam giác ABC cân tại A suy ra AB=AC suy ra A thuộc đường trung trực của  BC (3)

Từ (2) và (3) suy ra AD là đường TT của BC

16 tháng 12 2019

Bạn có nhầm đề ko?? Trong hình ko có điểm D nào hết?!!