\(\frac{7^{101-1}}{5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

\(\frac{-1}{7}\left(9\frac{1}{2}-8,75\right)\div\frac{2}{7}+62,5\%\div1\frac{2}{3}\)

\(=\frac{-1}{7}\left(\frac{19}{2}-8,75\right).\frac{7}{2}+62,5\%\div\frac{5}{3}\)

\(=\frac{-1}{7}\left(\frac{19}{2}-\frac{875}{100}\right).\frac{7}{2}+62,5\%.\frac{3}{5}\)

\(=\frac{-1}{2}\left(\frac{38}{4}-\frac{35}{4}\right)+\frac{625}{100}.\frac{3}{5}\)

\(=\frac{-1}{2}.\frac{3}{4}+\frac{25}{4}.\frac{3}{5}\)

\(=\frac{-3}{8}+\frac{75}{20}\)

\(=\frac{-15}{40}+\frac{150}{40}\)

\(=\frac{135}{40}=\frac{27}{8}\)

15 tháng 7 2018

\(\frac{3}{x}+\frac{2y}{5}-\frac{1}{5}=0\)

\(\frac{3}{x}+\frac{2y-1}{5}=0\)

\(\frac{3}{x}=\frac{-2y-1}{5}\)

\(x\left(-2y-1\right)=15\)

Tự làm tiếp

15 tháng 7 2018

Tìm x,y :

\(\frac{3}{x}+\frac{2y}{5}-\frac{1}{5}=0\)

\(\frac{3}{x}+\frac{2y}{5}=0+\frac{1}{5}\)

\(\frac{3}{x}+\frac{2y}{5}=\frac{1}{5}\)

\(\Leftrightarrow x\ne5\)

\(\text{Khi quy đồng để cộng bằng }\frac{1}{5}\text{ ta phỉ quy đồng nên :}\)

\(\frac{3\cdot5}{x\cdot5}+\frac{2y\cdot x}{5\cdot x}=\frac{15}{x\cdot5}+\frac{2y\cdot}{5\cdot x}=\left(\frac{3?}{5\cdot x}>< \frac{4?}{5\cdot x}\right)=\frac{1}{5}\)

\(\text{Ta có 4 trường hợp : }\)

\(\frac{30}{150};\frac{35}{175};\frac{40}{200};\frac{45}{225}\)

Mình cũng chưa học về cái này nhiều ! Mình cũng không chắc ! Bạn có thể rút ra một số về bài của mình đó ! Chuccs bạn học tốt !

20 tháng 2 2020

Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)

Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

            \(\frac{1}{5^2}< \frac{1}{4.5}\)

             ...

            \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)  

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

Vậy A<\(\frac{3}{4}\)

20 tháng 2 2020

A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)

mk chỉ tiềm đc bài i hệt bài của bn 

https://olm.vn/hoi-dap/detail/99402078680.html

8 tháng 2 2020

Câu 1 :

Ta có : \(A=\frac{10^{100}+1}{10^{101}+1}\)

\(\Rightarrow10A=\frac{10^{101}+10}{10^{101}+1}=\frac{10^{101}+1+9}{10^{101}+1}=1+\frac{9}{10^{101}+1}\)

Ta có : \(B=\frac{10^{101}+1}{10^{102}+1}\)

\(10B=\frac{10^{102}+10}{10^{102}+1}=\frac{10^{102}+1+9}{10^{102}+1}=1+\frac{9}{10^{102}+1}\)

Vì 10101+1<10102+1 

\(\Rightarrow\frac{9}{10^{101}+1}>\frac{9}{10^{102}+1}\)

\(\Rightarrow1+\frac{9}{10^{101}+1}>1+\frac{9}{10^{102}+1}\)

\(\Rightarrow\)10A>10B

\(\Rightarrow\)A>B

Vậy A>B.

8 tháng 2 2020

Câu 2 :

Ta có : \(E=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)

Vì 2001<2001+2002 và 2002<2001+2002

\(\Rightarrow\hept{\begin{cases}\frac{2000}{2001}>\frac{2000}{2001+2002}\\\frac{2001}{2002}>\frac{2001}{2001+2002}\end{cases}}\)

\(\Rightarrow C>E\)

Vậy C>E.

8 tháng 4 2018

Ta có \(\frac{1}{9S}=\frac{9^{2017}+\frac{1}{9}}{9^{2017}+1}\)=   \(\frac{9^{2017}+1-\frac{8}{9}}{9^{2017}+1}=1-\frac{\frac{8}{9}}{9^{2017}+1}\)

           \(\frac{1}{9M}=\frac{9^{2016}+\frac{1}{9}}{9^{2016}+1}\)=    \(\frac{9^{2016}+1-\frac{8}{9}}{9^{2016}+1}=1-\frac{\frac{8}{9}}{9^{2016}+1}\)

Vì \(9^{2016}+1< 9^{2017}+1\)=> \(\frac{\frac{8}{9}}{9^{2016}+1}>\frac{\frac{8}{9}}{9^{2017}+1}\)

=> \(1-\frac{\frac{8}{9}}{9^{2016}+1}< 1-\frac{\frac{8}{9}}{9^{2017}+1}\)=>  \(\frac{1}{9}S< \frac{1}{9}M\Rightarrow S< M\)

11 tháng 2 2020

https://olm.vn/hoi-dap/detail/56174930308.html

Tham khảo vài câu ở đây nha !

12 tháng 2 2020

Bạn ơi mình ko vào được

5 tháng 4 2019

a) A = \(\frac{101}{19}.\) \(\frac{61}{218}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)

        \(\frac{101}{218}.\frac{61}{19}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)

        =\(\frac{101}{218}.\left(\frac{61}{19}-\frac{42}{19}\right)+\frac{117}{218}\)

        =\(\frac{101}{218}.\frac{19}{19}+\frac{117}{218}\)

        =\(\frac{101}{218}.1+\frac{117}{218}\)

        =\(\frac{101}{218}+\frac{117}{218}\)

        =\(\frac{218}{218}\)\(=1\)

b) B = \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).\left(\frac{4}{5}-\frac{3}{4}-\frac{1}{20}\right)\)

        =     \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right)\)\(.\left(\frac{1}{20}-\frac{1}{20}\right)\)

        \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).0\)

        = \(0\)