K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2022

=)) Yêu cầu vẽ gì ở đề bài với câu b v bạn cm gì ở phần a v đăng lại bài đi

31 tháng 1 2016

a, phải là cmr: TG AHB=TG AHC

TG AHB và TG AHC có: AH chung; góc AHC=góc AHB (=90 độ) và AB=AC(GT) tùa 3 điều trên =>TG AHB=TG AHC(cgv.ch)(đpcm) và cũng do đó: góc BAH=góc CAH

b,Nối M->N

TG AHM và TG AHN có: AH chung; góc AMH=góc AHN (=90 độ) và góc BAH=góc CAH(cm trên) từ 3 điều trên=>TG AHM = TG AHN(ch.gn)=>AM=AN

Mặt khác TG AMN có AM=AN(cm trên)=>TG AMN(đn tg cân)

c,Ta có: tg ABC có góc A+ góc B+góc C=180 độ(đlí tổng 3 góc tg) mà góc ABC=góc ACB(t/c tg cân)=>góc ABC=góc ACB=180 độ-góc A(1)

Và tg AMN có góc MAN+góc ANM+góc AMN=180 độ mà góc AMN=góc ANM(t/c tg cân)=> góc ANM=góc AMN=180 độ-góc MAN(đlí tổng 3 góc tam giác)(2)

(1) và (2) suy ra: góc ABC=góc ACB=góc ANM=góc AMN(= góc MAN)

góc ABC=góc AMN mà góc ABC và góc AMN là hai góc SLT=>MN ss BC(đpcm)

 

 

26 tháng 1 2017

TU VE HINH NHA

CÓ TAM GIÁC ABC VUÔNG TẠI A :

=>AB=AC( DN TAM GIÁC CÂN)

a) XÉT TAM GIÁC ABH VUÔNG TẠI H VÀ TAM GIÁC ACH VUÔNG TẠI H CÓ:

AB=AC( CMT)

AH CHUNG

=> TAM GIÁC AHB = TAM GIAC AHC( CH- CGV)

b)TAM GIÁC AHB= TAM GIÁC AHC (CM Ở CÂU a)

=>GÓC BAH = GÓC CAH(2 GÓC TƯƠNG ỨNG)

XÉT TAM GIÁC AMH VUÔNG TẠI M VÀ TÂM GIC ANH VUÔNG TẠI N CÓ:

GÓC BAH= GÓC CAH(CMT)

AH CHUNG

=> TAM GIÁC AMH = TAM GIÁC ANH( CH- GN)

=>AM=AN( 2 CÁNH TUONG ỨNG)

=>TAM GIAC AMN CÂN TẠI A( DN TAM GIAC CAN )

K CHO M NHA

26 tháng 1 2017

bạn náo giải câu c, d mình tích cho

13 tháng 4 2019

Hình (tự vẽ)

a) ΔABE cân

Xét hai tam giác vuông ABH và EBH có:

\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)

HB là cạnh chung.

Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)

⇒ BA = BE (2 cạnh tương ứng)

⇒ ΔABE cân tại B.

b) ΔABE đều

Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.

c) AED cân 

Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)

Xét hai tam giác vuông ADH và EDH có:

AH = EH (cmt)

HD: cạnh chung

Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)

⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)

⇒ ΔAED cân tại D

d) ΔABF cân

Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong)     (1)

Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)

Thay: 60o + ABF = 180o

⇒ ABF = 180o - 60o = 120o

Xét ΔABF, ta có: 

\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)

Thay: 120o + BFA + 30o = 180o

⇒ BFA = 180 - 120 - 30 = 30 (2)

Từ (1) và (2) suy ra: ΔABF cân tại B.

12 tháng 3 2022

a, Xét tam giác AHB và tam giác AHC có 

AH _ chung 

AB = AC 

Vậy tam giác AHB~ tam giác AHC (ch-cgv) 

Ta có tam giác ABC cân tại A, có AH là đường cao 

đồng thười là đường pg 

b, Xét tam giác AMH và tam giác NAH có 

HA _ chung 

^MAH = ^NAH 

Vậy tam giác AMH = tam giác NAH (ch-gn) 

=> AM = AN ( 2 cạnh tương ứng ) 

c, Ta có AM/AB = AN/AC => MN // BC 

d, Ta có \(AH^2+BM^2=AN^2+BH^2\)

Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)

Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)

Lại có AM = AN (cmt) 

\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M) 

Vậy ta có đpcm 

 

12 tháng 3 2022

a vẽ hình cho e đc k ạ