K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017
ΔΔ ADB vuông tại D nên: DBAˆ+DABˆ=900DBA^+DAB^=900 Lại có: EACˆ+DABˆ=1800−BACˆ=1800−900=900EAC^+DAB^=1800−BAC^=1800−900=900 ⇒⇒ DBAˆ=EACˆDBA^=EAC^ (1) ΔΔ ABC cân tại A nên AB = AC Kết hợp với (1) ⇒⇒ ΔADB=ΔCEAΔADB=ΔCEA (cạnh huyền - góc nhọn) ⇒BD=AE,AD=CE⇒BD=AE,AD=CE ⇒BD+CE=AE+AD=DE⇒BD+CE=AE+AD=DE b. ΔΔ AMB và ΔΔ AMC có: AB=ACAB=AC (ΔΔ ABC cân tại A) MB=MCMB=MC (M là trung điểm của BC) AM là cạnh chung ⇒ΔAMB=ΔAMC⇒ΔAMB=ΔAMC (c.c.c) ⇒MABˆ=MACˆ=900:2=450⇒MAB^=MAC^=900:2=450 Mà ΔΔ ABC vuông cân tại A nên: ABMˆ=450⇒MABˆ=ABMˆ=450ABM^=450⇒MAB^=ABM^=450 ⇒⇒ ΔΔ AMB vuông cân tại M ⇒⇒ MA=MBMA=MB Ta lại có: DBAˆ=EACˆ⇒DBAˆ+450=EACˆ+450DBA^=EAC^⇒DBA^+450=EAC^+450 ⇒DBAˆ+MBAˆ=EACˆ+MACˆ⇒MBDˆ=MAEˆ⇒DBA^+MBA^=EAC^+MAC^⇒MBD^=MAE^ Kết hợp với MA=MBMA=MB và BD=AEBD=AE ⇒⇒ ΔBDM=ΔAEMΔBDM=ΔAEM (c.g.c) ⇒BMDˆ=AMEˆ,MD=ME⇒BMD^=AME^,MD=ME (*) Lại có: DMAˆ+BMDˆ=DMAˆ+AMEˆ=900DMA^+BMD^=DMA^+AME^=900 (**) Từ (*) và (**) ta suy ra ΔΔ DME vuông cân tại M.
30 tháng 10 2017

tilado.edu.vn/student/facebook_view_question/code/747142 link đó bạn nào cần

Giúp mìk với nha mn!!!! kamsa nhiều ạk!!!! BÀI  6.Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.a) Chứng minh ΔAHB = ΔDBH.b) Chứng minh AB//HD.c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.d) Tính góc ACB , biết góc BDH= 350 .Bài 7 :Cho tam giác ABC cân...
Đọc tiếp

Giúp mìk với nha mn!!!! kamsa nhiều ạk!!!! 

BÀI  6.

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 7 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

  1. Chứng minh : DB = EC.
  2. Gọi O là giao điểm của BD và  EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
  3. Chứng minh rằng : DE // BC.

Bài 8 :

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

  1. Chứng minh : CD // EB.
  2. Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF

Bài 9 :

Cho tam giác ABC vuông tại A có góc B=60 độ . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

  1. Tam giác  ACE đều.
  2. A, E, F thẳng hàng.

 

1
14 tháng 2 2016

moi hok lop 6 thoi

Bài 1:Cho tam giác đều ABC. Trên tia AC lấy điểm D(AD>AC ) vẽ tam giác đều ADE(BE thuộc 2 nửa mặt phẳng đối nhau bờ là AD). Tia EC cắt BC ở M.a) Chứng minh BD = CE . b) Trên tia ME lấy điểm F sao cho MF=MD . Chứng minh tam giác MDF đều.c) Chứng minh ME = MD + MA                         MA + MB + MCBài 2:Cho ∆ABC. Vẽ AH vuông góc BC (H thuộc BC). Về phía ngoài ∆ABC vẽ các tam giác ABD và ACE vuông...
Đọc tiếp

Bài 1:Cho tam giác đều ABC. Trên tia AC lấy điểm D(AD>AC ) vẽ tam giác đều ADE

(BE thuộc 2 nửa mặt phẳng đối nhau bờ là AD). Tia EC cắt BC ở M.

a) Chứng minh BD = CE . 

b) Trên tia ME lấy điểm F sao cho MF=MD . Chứng minh tam giác MDF đều.

c) Chứng minh ME = MD + MA

                         MA + MB + MC

Bài 2:Cho ∆ABC. Vẽ AH vuông góc BC (H thuộc BC). Về phía ngoài ∆ABC vẽ các tam giác ABD và ACE vuông cân tại A. Đường thẳng AH cắt DE tại M.
a) Chứng minh: \(BD^2+CE^2=2\left(AB^2+AC^2\right)=2BH^2+4AH^2+2CH^2\)
b) Vẽ DP vuông góc AH tại P, EQ vuông góc AH tại Q. Chứng minh AP = BH
c) Chứng minh M là trung điểm của DE
d) Đường thẳng qua D song song với AE và đường thẳng qua E song song với AD cắt nhau tại F. Chứng minh F, A, H thẳng hàng.

*Có vẽ hình nhé!!!

 

0
Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0
23 tháng 3 2020

Hình :

A B C D E O F