K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2020

a) a^2>0. Nếu a^2= (-).(-);  (+).(+) thì ta có

th1: (+) . (+) = (+) Chọn (+)2 a^2>0

th2: (-). (-) = (+) Chọn (-)2 a^2>0

Vậy...

25 tháng 1 2020

làm bổ sung cho câu b) là : muốn A có giá trị nhỏ nhất thì (x-8)2 phải có giá trị nhỏ nhất mà giá trị nhỏ nhất của (x-8)là 0

=) A có giá trị nhỏ nhất là -2018

c) : muốn B có giá trị lớn nhất thì -(x+5)2 phải có giá trị lớn nhất mà  -(x+5)có giá trị lớn nhất là \(\infty\)mà không có số nào là số lớn nhất =) B vẫn chỉ có giá trị lớn nhất là \(\infty\)

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

1.

Ta thấy $(x-13)^2\geq 0$ với mọi $x$

$\Rightarrow T=(x-13)^2-26\geq 0-26=-26$

Vậy GTNN của $T$ là $-26$.

Giá trị này đạt tại $x-13=0\Leftrightarrow x=13$

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

2.

Ta thấy: $(x-14)^2\geq 0$ với mọi $x$

$\Rightarrow M=20-(x-14)^2\leq 20-0=20$

Vậy $M_{\max}=20$. Giá trị này đạt tại $x-14=0$

Hay $x=14$.

5 tháng 2 2020

Bài 1 : 

Đề câu a) có thêm \(n\inℤ\)

a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)

Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)

\(\Rightarrow n\left(n+1\right)+2⋮2\)

\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)

hay \(A⋮̸2\) ( đpcm )

b) Ta có : \(\left|2x-4\right|\ge0\forall x\)

\(\Rightarrow-\left|2x-4\right|\le0\forall x\)

\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)

hay \(A\le18\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)

Vậy max \(A=18\) khi \(x=2\)

5 tháng 2 2020

b1 : 

a,n^2 + n + 3

= n(n + 1) + 3

n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2

=> n(n+1) + 3 không chia hết cho 2

b, A = 18 - |2x - 4| 

|2x - 4| > 0 => - |2x - 4| < 0

=> 18 - |2x - 4| < 18 

=> A < 18

xét A = 18 khi |2x - 4| = 0

=> 2x - 4 = 0

=> x = 2

c, A = |5 - x| + 2015

|5 - x| > 0

=> |5 - x| + 2015 > 2015

=> A  > 2015

xét A = 2015 khi |5 - x| = 0

=> 5 - x = 0 => x = 5

20 tháng 11 2021

A+x-2 +y-6 wdhwdnjwdfQRQEFREFAFEWFWEFWEFFEFWWWFEF

a) Với \(\forall a\in Z\) và a≠0, ta luôn có

\(a^2=a\cdot a\) có giá trị dương(vì âm nhân âm ra dương, dương nhân dương ra dương)(1)

Với a=0, ta luôn có:

\(a^2=a\cdot a=0\cdot0=0\)(2)

Từ (1) và (2) suy ra \(a^2\ge0\forall a\)

\(-a^2\le0\forall a\)

b) Ta có: \(\left(x-8\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-8\right)^2-2018\ge-2018\forall x\)

Dấu '=' xảy ra khi

\(\left(x-8\right)^2=0\Leftrightarrow x-8=0\Leftrightarrow x=8\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=\left(x-8\right)^2-2018\) là -2018 khi x=8

c) Ta có: \(\left(x+5\right)^2\ge0\forall x\)

\(-\left(x+5\right)^2\le0\forall x\)

\(-\left(x+5\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi

\(\left(x+5\right)^2=0\Leftrightarrow x+5=0\Leftrightarrow x=-5\)

Vậy: Giá trị lớn nhất của biểu thức \(B=-\left(x+5\right)^2+9\) là 9 khi x=-5

27 tháng 7 2020

a)\(x\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)

vậy x=3 hoặcx=-3

b) \(\left(x-2\right)\left(5-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\) 

vậy x=2 hoặc x=5

c)\(\left(x-1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=-1\left(ktm\right)\end{cases}}\)

vậy x=1

27 tháng 7 2020

a) x( x + 3 ) = 0

<=> x = 0 hoặc x + 3 = 0

<=> x = 0 hoặc x = -3

b) ( x - 2 )( 5 - x ) = 0

<=> x - 2 = 0 hoặc 5 - x = 0

<=> x = 2 hoặc x = 5

c) ( x - 1 )( x2 + 1 ) = 0

<=> x - 1 = 0 hoặc x2 + 1 = 0

<=> x = 1 hoặc x2 = -1 ( loại )

Vậy x = 1

2. A = ( 5m2 - 8m2 )( -n3 + 4n3 )

A = -3m2.3n3

A = -9m2n3

Nhận xét : 

\(m^2\ge0\forall m\)

\(-9m^2n^3\ge0\forall m\)và n âm

\(-9m^2n^3\le0\forall m\)và n dương

Vậy với mọi m và n dương thì \(A\le0\)

3. a) -12( x - 5 ) + 7( 3 - x ) = 5

<=> -12x + 60 + 21 - 7x = 5

<=> -19x + 81 = 5

<=> -19x = -76

<=> x = 4

b) 30( x + 2 ) - 6( x - 5 ) - 24x = 100

<=> 30x + 60 - 6x + 30 - 24x = 100

<=> 0x + 90 = 100

<=> 0x = 10 ( mâu thuẫn )

Vậy x = \(\varnothing\)