K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

a,=(2a + b - 3c).(2a + b - 3c)

=4a\(^2\)+2ab-6ac+2ab+b\(^2\)-3bc-6ac-3cb+9c\(^2\)

=4a\(^2\)+b\(^2\)+9c\(^2\)+4ab

=2\(^2\).a\(^2\)+4ab+b\(^2\)+9c\(^2\)

=(2a+b)\(^2\)+9c\(^2\)( đáng lẽ chỗ này nó phải là -9c\(^2\) nhưng t ko ra đc )

b,=(a + 2b + 3c - 4d)(a + 2b + 3c - 4d)

=a\(^2\)+2ab+3ac-4ad+2ab+4b\(^2\)+6bc-8bd+3ac+6bc+9c\(^2\)-12cd-4ad-8bd-12cd+16d\(^2\)

=a\(^2\)+4b\(^2\)+9c\(^2\)+16d\(^2\)+4ab+6ac-8ad+12bc-16bd-24cd

=(a\(^2\)+4ab+4b\(^2\))+(9c\(^2\)-24cd+16d\(^2\))+6ac-8ad+12bc-16bd

=(a+2b)\(^2\)+(3c-4d)\(^2\)+2(3ac-4ad+6bc-8bd)

=(a+2b)\(^2\)+(3c-4d)\(^2\)+2[a(3c-4d)+2b(3c-4d)]

=(a+2b)\(^2\)+(3c-4d)\(^2\)+2(a+2b)(3c-4d)

khiếp bài dài nghoằng ra ý :(

24 tháng 10 2019

Câu hỏi của Chi Chi - Toán lớp 8 - Học toán với OnlineMath

9 tháng 11 2017

Sửa đề: CMR: \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{1}{5}\left(a+b+c\right)\)

Chứng minh BĐT phụ:

  \(\frac{x^2}{m}+\frac{y^2}{n}\ge\frac{\left(x+y\right)^2}{m+n}\)\(\forall m;n>0\)Tự chứng minh

Áp dụng bđt trên, ta có

\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{1}{5}\left(a+b+c\right)\)

Vậy..........

8 tháng 9 2020

A = 4acx + 4bcx + 4ax + 4bx ( đã sửa '-' )

= 4x( ac + bc + a + b )

= 4x[ c( a + b ) + ( a + b ) ]

= 4x( a + b )( c + 1 )

B = ax - bx + cx - 3a + 3b - 3c

= x( a - b + c ) - 3( a - b + c )

= ( a - b + c )( x - 3 )

C = 2ax - bx + 3cx - 2a + b - 3c

= x( 2a - b + 3c ) - ( 2a - b + 3c )

= ( 2a - b + 3c )( x - 1 )

D = ax - bx - 2cx - 2a + 2b + 4c

= x( a - b - 2c ) - 2( a - b - 2c )

= ( a - b - 2c )( x - 2 )

E = 3ax2 + 3bx2 + ax + bx + 5a + 5b

= 3x2( a + b ) + x( a + b ) + 5( a + b )

= ( a + b )( 3x2 + x + 5 )

F = ax2 - bx2 - 2ax + 2bx - 3a + 3b

= x2( a - b ) - 2x( a - b ) - 3( a - b )

= ( a - b )( x2 - 2x - 3 )

= ( a - b )( x2 + x - 3x - 3 )

= ( a - b )[ x( x + 1 ) - 3( x + 1 ) ]

= ( a - b )( x + 1 )( x - 3 )

26 tháng 11 2016

a2 + b2 + c2 + 3,5 = a + 2b + 3c

<=> (a2 - a + 0,25) + (b2 - 2b + 1) + (c2 - 3c + 2,25) = 0

<=> (a - 0,5)2 + (b - 1)2 + (c - 1,5)2 = 0

<=> (a; b; c) = (0,5; 1; 1,5)

7 tháng 10 2018

a ) Sai đề : \(21bc^2+6c+3c^3+42b\)

\(=3c^2\left(7b+c\right)+6\left(7b+c\right)\)

\(=\left(3c^2+6\right)\left(7b+c\right)\)

\(=3\left(c^2+2\right)\left(7b+c\right)\)

b ) \(a^2+b^2+2a-2b-2ab\)

\(=\left(a^2-2ab+b^2\right)+2\left(a-b\right)\)

\(=\left(a-b\right)\left(a-b+2\right)\)

c ) \(x^2-5x+4\)

\(=x^2-4x-x+4\)

\(=x\left(x-4\right)-\left(x-4\right)\)

\(=\left(x-1\right)\left(x-4\right)\)

8 tháng 10 2018

a)Sai đề nha bạn

\(21bc^2+6c+3c^3+42b=3c^2\left(7b+3c\right)+6\left(7b+c\right)=\left(3c^2+6\right)\left(7b+c\right)\)

b)\(a^2+b^2+2a-2b-2ab=a^2-2ab+b^2+2a-2b=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)

c)\(x^2-5x+4=x^2-x-4x+4=x\left(x-1\right)-4\left(x-1\right)=\left(x-4\right)\left(x-1\right)\)

8 tháng 7 2016

đề bài của bài 1 là rút gọn

20 tháng 10 2019

Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)

Khi đó điều kiện đb tương ứng

\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)

\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)

\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)

\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)

Do đó ta có đpcm

Chúc bạn học tốt!

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)