Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3+y3+z3-3xyz
=(x+y)3+z3-3x2y-3xy2-3xyz
=(x+y+z).[(x+y)2+(x+y).z+z2]-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2)-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2-3xy)
=(x+y+z)(x2+y2+zx+zy+z2-zy)
b)a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2a-c2b
=(a2b-c2b)+(-a2c+c2a)+(b2c-b2a)
=b.(a2-c2)-ac.(a-c)-b2.(a-c)
=b.(a+c)(a-c)-ac.(a-c)-b2.(a-c)
=(a-c)[b.(a+c)-ac-b2]
=(a-c)(ab+bc-ac-b2)
=(a-c)[(ab-ac)+(bc-b2)]
=(a-c)[a.(b-c)-b.(b-c)]
=(a-c)(b-c)(a-b)
a,\(5xy^3-2xyz-15y^2+6z\)
\(=\left(5xy^3-15y^2+6z-2xyz\right)\)
\(=5y^2\left(xy-3\right)-2z\left(xy-3\right)\)
\(=\left(5y^2-2z\right)\left(xy-3\right)\)
a) 5xy3 - 2xyz - 15y2 + 6z
= ( 5xy3 - 15y2 ) - ( 2xyz - 6z )
= 5y2( xy - 3 ) - 2z( xy - 3 )
= ( xy - 3 )( 5y2 - 2z )
b) ab3c2 - a2b2c2 + ab2c3 - a2bc3
= abc2( b2 - ab + bc - ac )
= abc2[ ( b2 - ab ) + ( bc - ac ) ]
= abc2[ b( b - a ) + c( b - a ) ]
= abc2( b - a )( b + c )
c) \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
d) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
I don't now
...............
.................
a) \(43x^3y^3-32x^2y^2\)
\(=x^2y^2\left(43xy-32\right)\)
b) \(ax-bx+ab-x^2\)
\(=\left(ax+ab\right)-\left(bx+x^2\right)\)
\(=a\left(b+x\right)-x\left(b+x\right)\)
\(=\left(a-x\right)\left(b+x\right)\)
c) \(12a^2b-18ab^2-30b^2\)
\(=6b\left(2a^2-3ab-5b\right)\)
d) \(27a^2\left(b-1\right)-9a^3\left(1-b\right)\)
\(=27a^2\left(b-1\right)+9a^3\left(b-1\right)\)
\(=\left(27a^2+9a^3\right)\left(b-1\right)\)
\(=9a^2\left(b-1\right)\left(a+3\right)\)
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)