Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
1. Ta xét các trường hợp
TH1 : Nếu |a+b| là số nguyên dương
=> a + b đạt giá trị dương
=> a + b = |a| + |b| (1)
TH2 : Nếu |a+b| là số nguyên âm
=> a + b đạt giá trị âm
=> a + b < |a| + |b| (2)
Từ (1) và (2) => đpcm
2. Ta xét các trường hợp :
TH1 : Nếu |a-b| là số nguyên dương
=> a - b đạt giá trị dương
=> a - b = |a| - |b| (1)
TH2 : Nếu |a-b| là số nguyên âm
=> a - b đạt giá trị âm
=> a - b > |a| - |b| (2)
Từ (1) và (2) => đpcm
Đúng k nhỉ ???
1. Với mọi \(a,b\inℚ\)ta luôn có : \(a\le\left|a\right|\)và \(-a\le\left|a\right|\); \(b\le\left|b\right|\)và \(-b\le\left|b\right|\)
\(\Rightarrow a+b\le\left|a\right|+\left|b\right|\)và \(-a-b\le\left|a\right|+\left|b\right|\)hay \(a+b\ge-\left[\left|a\right|+\left|b\right|\right]\)
Do đó : \(-\left[\left|a\right|+\left|b\right|\right]\le a+b\le\left|a\right|+\left|b\right|\)
Vậy : \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)
Dấu " = " xảy ra khi xy \(\ge\)0
2. Tương tự bài 1
a . theo đề bài :
a + b = a .b = a : b
a . b = a : b => a .b .b = a => b^2 = a : a = > b = 1 hoặc b -1
Với b = 1 thì a . 1 = a + 1 = > a = a + 1 ( loại )
Với b = -1 thì a . -1 = a + -1 => -a = a + -1 => -2a = -1 => a = 1/2
b ,c tương tự nhe
Câu 1 :
Ta có \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)
\(\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\)
Đặt : \(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}=k\)
\(\Rightarrow a=2k;b=\frac{3k}{2};c=\frac{4k}{3}\)
Do : \(a-b=15\)
\(\Rightarrow2k-\frac{3k}{2}=\frac{k}{2}=5\)
\(\Rightarrow k=5.2=10\)
\(\Rightarrow a=2.10=20\)
\(\Rightarrow b=\frac{3.10}{2}=15\)
\(\Rightarrow c=\frac{40}{3}\)
BÀI 2 mak k bt(viết cái đề cx sai nói gì làm!):
\(\left(2008\cdot a+3b+1\right)\left(2008^a+2008a+b\right)=225\)
=> cả 2 thừa số đều lẻ.
=>\(2018^a+2018a+b\)là số lẻ (1)
Với a khác 0,từ (1) suy ra:
b lẻ.
=>3b+1 chẵn
=>2008a+3b+1 chẵn(loại)
=>a=0,thay vào đề bài,ta có:
(3b+1)(b+1)=225=3*75= 5*45=9*25
do 3b+1>b+1 và 3b+1 không chia hết cho 3
\(\Rightarrow\hept{\begin{cases}3b+1=25\\b+1=9\end{cases}\Rightarrow}b=8\)
vậy:a=0,b=8
Ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
=> \(1+\frac{a+b+c+d}{a}=1+\frac{a+b+c+d}{b}=1+\frac{a+b+c+d}{c}=1+\frac{a+b+c+d}{d}\)
=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Khi a + b + c + d => a + b = -(c + d) ;
b + c = -(a + d) ;
c + d = -(a + b)
d + a = -(b + c)
Khi đó \(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)
= (-1) + (-1) + (-1) + (-1) = -4
Khi a + b + c + d \(\ne0\)
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = \(\frac{2a}{2a}+\frac{2b}{2b}+\frac{2c}{2c}+\frac{2d}{2d}=2+2+2+2=8\)
Vậy khi a + b + c + d = 0 thì M = -4
khi a + b + c + d \(\ne\)0 thì M = 8
Câu 1 :
\(a,2\left(\frac{3}{4}-5x\right)=\frac{4}{5}-3x\)
\(\Rightarrow\frac{3}{2}-10x=\frac{4}{5}-3x\)
\(\Rightarrow7x=\frac{3}{2}-\frac{4}{5}\)
\(\Rightarrow7x=\frac{7}{10}\)\(\Leftrightarrow x=0,1\)
\(b,\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)
\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)
\(\Rightarrow11x=\frac{2}{3}+1-\frac{3}{2}\)
\(\Rightarrow11x=\frac{4+6-9}{6}-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{66}\)
Câu 2 :
\(a,\frac{2}{x-1}< 0\)
Vì \(2>0\Rightarrow\)để \(\frac{2}{x-1}< 0\)thì \(x-1< 0\Leftrightarrow x< 1\)
\(b,\frac{-5}{x-1}< 0\)
Vì \(-5< 0\)\(\Rightarrow\)để \(\frac{-5}{x-1}< 0\)thì \(x-1>0\Rightarrow x>1\)
\(c,\frac{7}{x-6}>0\)
Vì \(7>0\Rightarrow\)để \(\frac{7}{x-6}>0\)thì \(x-6>0\Rightarrow x>6\)
Ta có: a.b=6 => a=6/b (1)
2a+b=7 (2)
Thay (1) vào (2) ta đc
2.6/b+b=7 <=> 12/b+b= 7 <=> (12+b^2) /b = 7 => 12+b^2= 7b => 12= 7b-b^2 => 12= b. ( 7-b)
Thay các giá trị ta tìm đc b thỏa mãn bằng 4 => a= 3/2