Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 225 là số lẻ
\(\Rightarrow\)( 2008a + 3b + 1 )(2008\(^a\) + 2008a + b ) là số lẻ
Nếu a\(\ne\)0 \(\Rightarrow\)2008\(^a\)+ 2008a là số chẵn để 2008\(^a\)+ 2008a + b lẻ
\(\Rightarrow\)b lẻ
Nếu b lẻ \(\Rightarrow\)3b + 1 chẵn do đó : 2008a + 3b + 1 chẵn ( không thỏa mãn )
Vậy a = 0
Với a =0 \(\Rightarrow\)( 3b +1 ) ( b + 1) =225
Vì b\(\in\)N \(\Rightarrow\)( 3b +1 ) ( b +1 ) =3.75=5.45=9.25
3b + 1 không chia hết cho 3 và 3b +1 >b+1
\(\Rightarrow\)3b + 1 =25
b + 1=9
\(\Rightarrow\) b =8
Lưu ý: Đề là:
Tìm các số tự nhiên a và b sao cho:
(2008a+3b+1).(2008.a +2008a+b)=225
Chứ ko phải:
Tìm các số tự nhiên a và b sao cho:
(2008a+3b+1).(2008a +2008a+b)=225
Nên khi trả lời rất mong các bn chú ý một chút
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
3. Tìm x biết: |15-|4.x||=2019
\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)
vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)
KL: x=508,5
bài 1
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=>\frac{a+b+c}{b+c+a}=1=>a=b=c\)
bài 2
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{a+b+c}\)
bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> \(\frac{a}{b}=1\)
\(\frac{b}{c}=1\)
\(\frac{c}{a}=1\)
=> a=b (1)
b=c (2)
c=a (3)
=> a=b=c
2.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-3-3y-5+4z-4}{2.4-3.3+4.5}=\frac{2x-3y+4z-12}{19}=\frac{75-12}{19}=\frac{63}{19}\)
=> x,y,z=
1) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13=\sqrt{169}>\sqrt{168}\)
=> \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)
6) Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)
Khi đó M > \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=> M > 1
Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{cases}}\)
Khi đó M < \(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
=> M < 2 (2)
Kết hợp (1) và (2) => 1 < M < 2
=> \(M\notinℤ\)(ĐPCM)
Sai thì thôi nhé!
a) \(f\left(-3\right)=\frac{2}{3}\times-3-\frac{1}{2}=-2-\frac{1}{2}=\frac{-4}{2}-\frac{1}{2}=\frac{-5}{2}\)
\(f\left(\frac{3}{4}\right)=\frac{2}{3}\times\frac{3}{4}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0\)
b) \(f\left(x\right)=\frac{1}{2}\Leftrightarrow\frac{2}{3}\times x-\frac{1}{2}=\frac{1}{2}\Leftrightarrow\frac{2}{3}\times x=1\Leftrightarrow x=1:\frac{2}{3}\Leftrightarrow x=1\times\frac{3}{2}\Leftrightarrow x=\frac{3}{2}\)
c)\(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\left(1\right)\)
\(A\left(\frac{3}{4};-\frac{1}{2}\right)\)
\(A\left(\frac{3}{4};\frac{-1}{2}\right)\Rightarrow\hept{\begin{cases}x_A=\frac{3}{4}\\y_A=\frac{-1}{2}\end{cases}}\)
Thay \(x_A=\frac{3}{4}\)vào (1) ta có:
\(y=f\left(x\right)=\frac{2}{3}\times\frac{3}{4}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0\ne y_A\)
Vậy điểm A không thuộc đồ thì hàm số \(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\)
\(B\left(0,5;-2\right)\)
\(B\left(0,5;-2\right)\Rightarrow\hept{\begin{cases}x_B=0,5\\y_B=-2\end{cases}}\)
Thay \(x_B=0,5\)vào (1) ta có:
\(y=f\left(x\right)=\frac{2}{3}\times0,5-\frac{1}{2}=\frac{1}{3}-\frac{1}{2}=\frac{2}{6}-\frac{3}{6}=\frac{-1}{6}\ne y_B\)
Vậy điểm B không thuộc đồ thị hàm số \(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\)
Câu 1 :
Ta có \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)
\(\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\)
Đặt : \(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}=k\)
\(\Rightarrow a=2k;b=\frac{3k}{2};c=\frac{4k}{3}\)
Do : \(a-b=15\)
\(\Rightarrow2k-\frac{3k}{2}=\frac{k}{2}=5\)
\(\Rightarrow k=5.2=10\)
\(\Rightarrow a=2.10=20\)
\(\Rightarrow b=\frac{3.10}{2}=15\)
\(\Rightarrow c=\frac{40}{3}\)
BÀI 2 mak k bt(viết cái đề cx sai nói gì làm!):
\(\left(2008\cdot a+3b+1\right)\left(2008^a+2008a+b\right)=225\)
=> cả 2 thừa số đều lẻ.
=>\(2018^a+2018a+b\)là số lẻ (1)
Với a khác 0,từ (1) suy ra:
b lẻ.
=>3b+1 chẵn
=>2008a+3b+1 chẵn(loại)
=>a=0,thay vào đề bài,ta có:
(3b+1)(b+1)=225=3*75= 5*45=9*25
do 3b+1>b+1 và 3b+1 không chia hết cho 3
\(\Rightarrow\hept{\begin{cases}3b+1=25\\b+1=9\end{cases}\Rightarrow}b=8\)
vậy:a=0,b=8