K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Mk mới học lớp 6 thui

21 tháng 3 2017

Gọi x(km) là quãng đường AB (x>0)

Thời gian đi từ A đến B là: \(\dfrac{x}{24}\)

Thời gian đi từ B về A là: \(\dfrac{x}{30}\)

Đổi: 30min=\(\dfrac{1}{2}h\)

Theo đề, ta có PT:

\(\dfrac{x}{24}+\dfrac{x}{30}+\dfrac{1}{2}=5\)

\(\Leftrightarrow\dfrac{5x}{120}+\dfrac{4x}{120}+\dfrac{60}{120}=\dfrac{600}{120}\)

\(\Leftrightarrow9x=540\)

\(\Leftrightarrow x=60\)(nhận)

Vậy quãng đường AB dài 60km.

21 tháng 11 2017

A B C D H I K

AH
Akai Haruma
Giáo viên
28 tháng 7 2017

Lời giải:

a)

Ta có : \(\left\{\begin{matrix} \widehat{EHB}=\widehat{DHC}\\ `\widehat{HEB}=\widehat{HDC}\end{matrix}\right.\Rightarrow \triangle EHB\sim \triangle DHC\)

\(\Rightarrow \frac{EH}{HB}=\frac{DH}{HC}\Leftrightarrow \frac{EH}{HD}=\frac{HB}{HC}\)

Kết hợp với \(\widehat{EHD}=\widehat{BHC}\Rightarrow \triangle EHD\sim \triangle BHC(c.g.c)\)

Ta có đpcm.

b)

Theo phần a, \(\triangle EHD\sim \triangle BHC\Rightarrow \widehat{HED}=\widehat{HBC}\Rightarrow 90^0-\widehat{HED}=90^0-\widehat{HBC} \)

\(\Leftrightarrow \widehat{DEA}=\widehat{DCB}\) . Mà \(\widehat{DEA}=\widehat{PEB}\Rightarrow \widehat{PEB}=\widehat{DCB}\)

\(\left\{\begin{matrix} \widehat{BPE}=\widehat{BDC}\\ \widehat{PEB}=\widehat{DCB}\end{matrix}\right.\Rightarrow \triangle BPE\sim \triangle BDC\Rightarrow \frac{PE}{DC}=\frac{BE}{BC}(1)\)

Tương tự \(\triangle CDQ\sim \triangle CBE\Rightarrow \frac{DQ}{BE}=\frac{CD}{BC}(2)\)

Từ \((1),(2)\Rightarrow \frac{PE.BE}{DC.DQ}=\frac{BE}{DC}\Rightarrow \frac{PE}{DQ}=1\leftrightarrow PE=DQ\)

c) Gọi \(T\equiv HM\cap IK\)

Ta có \(\widehat{NAK}=\widehat{HBM}(=90^0-\widehat{ACB})(1)\)

Xét tứ giác \(HDKT\)\(\widehat{HDK}=\widehat{HTK}=90^0\Rightarrow \widehat{DKT}+\widehat{DHT}=180^0\)

\(\Leftrightarrow \widehat{AKN}=\widehat{DKT}=180^0-\widehat{DHT}=\widehat{MHB}(2)\)

Từ \((1),(2)\Rightarrow \triangle NAK\sim \triangle MBH\Rightarrow \frac{NK}{MH}=\frac{NA}{MB}\)

Tương tự, \(\triangle AIN\sim \triangle CHM\Rightarrow \frac{AN}{CM}=\frac{IN}{HM}\)

Từ hai tỉ số trên suy ra \(1=\frac{CM}{BM}=\frac{NK}{IN}\Rightarrow NK=IN\)

Vậy \(N\) là trung điểm của $IK$

31 tháng 3 2017

gọi x là số cần tìm(\(x\in Z\))

theo đề bài, ta có phương trình:

\(x-\dfrac{3x}{5}-\dfrac{4}{5}\left(x-\dfrac{3x}{5}\right)+\dfrac{\left(x-\dfrac{3x}{5}-\dfrac{4}{5}\left(x-\dfrac{3x}{5}\right)\right)}{5}=1,2\)

giải phương trình trên, ta được x=12,5

kiểm tra xem x=12,5 thõa mãn các điều kiện của ẩn. Vậy số cần tìm là 12,5