Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có \(P\) là trung điểm của $AB$, $N$ là trung điểm của $AC$ nên
\(AP=PB,AN=NC\Rightarrow \frac{AP}{PB}=\frac{AN}{NC}\)
Do đó theo định lý Tales suy ra \(PN\parallel BC\), mà \(AH\perp BC\Rightarrow PN\perp AH\) \((1)\)
Xét tam giác vuông tại $H$ là $AHB$ có $P$ là trung điểm của $AB$ nên $PA=PH$ . Tương tự, \(AN=NH\)$(2)$
Từ \((1),(2)\Rightarrow \) $PN$ là đường trung trực của $AH$
b) Do \(HM\parallel PN\Rightarrow HMNP\) là hình thang \((1)\)
Sử dụng tính chất so le trong và đồng vị với các đoạn \(PN\parallel BC, NM\parallel AB\) ta có:
\(\widehat{HPN}=\widehat{PHB}=90^0-\widehat{PHA}=90^0-\widehat{PAH}=\widehat{ABH}=\widehat{ABC}\)
\(\widehat{MNP}=\widehat{NMC}=\widehat{ABC}\)
Do đó \(\widehat{HPN}=\widehat{MNP}\) \((2)\)
Từ \((1),(2)\Rightarrow HMNP\) là hình thang cân.
Đặt tính \(2n^2-n+2\) : \(2n+1\) sẽ bằng n - 1 dư 3
Để chia hết thì 3 phải chia hết cho 2n + 1 hay 2n + 1 là ước của 3
Ư(3) = {\(\pm\) 3; \(\pm\) 1}
\(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)
\(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
\(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)
\(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)
Vậy \(n=\left\{0;-2;\pm1\right\}\)
Lời giải:
a)
Ta có : \(\left\{\begin{matrix} \widehat{EHB}=\widehat{DHC}\\ `\widehat{HEB}=\widehat{HDC}\end{matrix}\right.\Rightarrow \triangle EHB\sim \triangle DHC\)
\(\Rightarrow \frac{EH}{HB}=\frac{DH}{HC}\Leftrightarrow \frac{EH}{HD}=\frac{HB}{HC}\)
Kết hợp với \(\widehat{EHD}=\widehat{BHC}\Rightarrow \triangle EHD\sim \triangle BHC(c.g.c)\)
Ta có đpcm.
b)
Theo phần a, \(\triangle EHD\sim \triangle BHC\Rightarrow \widehat{HED}=\widehat{HBC}\Rightarrow 90^0-\widehat{HED}=90^0-\widehat{HBC} \)
\(\Leftrightarrow \widehat{DEA}=\widehat{DCB}\) . Mà \(\widehat{DEA}=\widehat{PEB}\Rightarrow \widehat{PEB}=\widehat{DCB}\)
Có \(\left\{\begin{matrix} \widehat{BPE}=\widehat{BDC}\\ \widehat{PEB}=\widehat{DCB}\end{matrix}\right.\Rightarrow \triangle BPE\sim \triangle BDC\Rightarrow \frac{PE}{DC}=\frac{BE}{BC}(1)\)
Tương tự \(\triangle CDQ\sim \triangle CBE\Rightarrow \frac{DQ}{BE}=\frac{CD}{BC}(2)\)
Từ \((1),(2)\Rightarrow \frac{PE.BE}{DC.DQ}=\frac{BE}{DC}\Rightarrow \frac{PE}{DQ}=1\leftrightarrow PE=DQ\)
c) Gọi \(T\equiv HM\cap IK\)
Ta có \(\widehat{NAK}=\widehat{HBM}(=90^0-\widehat{ACB})(1)\)
Xét tứ giác \(HDKT\) có \(\widehat{HDK}=\widehat{HTK}=90^0\Rightarrow \widehat{DKT}+\widehat{DHT}=180^0\)
\(\Leftrightarrow \widehat{AKN}=\widehat{DKT}=180^0-\widehat{DHT}=\widehat{MHB}(2)\)
Từ \((1),(2)\Rightarrow \triangle NAK\sim \triangle MBH\Rightarrow \frac{NK}{MH}=\frac{NA}{MB}\)
Tương tự, \(\triangle AIN\sim \triangle CHM\Rightarrow \frac{AN}{CM}=\frac{IN}{HM}\)
Từ hai tỉ số trên suy ra \(1=\frac{CM}{BM}=\frac{NK}{IN}\Rightarrow NK=IN\)
Vậy \(N\) là trung điểm của $IK$