Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Cho hình bình hành ABCD
Xét tứ giác DBEC có
BE//DC
BE=DC
DO đó: DBEC là hình bình hành
Suy ra: DB//CE và DB=CE
Xét tứ giác BDFC có
BC//DF
BC=DF
Do đó: BDFC là hình bình hành
Suy ra: BD//CF và BD=CF
Ta có: BD//CF
BD//CE
CF và CE có điểm chung là C
Do đó: F,C,E thẳng hàng
mà CE=CF(=BD)
nên C la trung điểm của FE
hay F và E đối xứng nhau qua C
Lời giải:
a)
Ta có : \(\left\{\begin{matrix} \widehat{EHB}=\widehat{DHC}\\ `\widehat{HEB}=\widehat{HDC}\end{matrix}\right.\Rightarrow \triangle EHB\sim \triangle DHC\)
\(\Rightarrow \frac{EH}{HB}=\frac{DH}{HC}\Leftrightarrow \frac{EH}{HD}=\frac{HB}{HC}\)
Kết hợp với \(\widehat{EHD}=\widehat{BHC}\Rightarrow \triangle EHD\sim \triangle BHC(c.g.c)\)
Ta có đpcm.
b)
Theo phần a, \(\triangle EHD\sim \triangle BHC\Rightarrow \widehat{HED}=\widehat{HBC}\Rightarrow 90^0-\widehat{HED}=90^0-\widehat{HBC} \)
\(\Leftrightarrow \widehat{DEA}=\widehat{DCB}\) . Mà \(\widehat{DEA}=\widehat{PEB}\Rightarrow \widehat{PEB}=\widehat{DCB}\)
Có \(\left\{\begin{matrix} \widehat{BPE}=\widehat{BDC}\\ \widehat{PEB}=\widehat{DCB}\end{matrix}\right.\Rightarrow \triangle BPE\sim \triangle BDC\Rightarrow \frac{PE}{DC}=\frac{BE}{BC}(1)\)
Tương tự \(\triangle CDQ\sim \triangle CBE\Rightarrow \frac{DQ}{BE}=\frac{CD}{BC}(2)\)
Từ \((1),(2)\Rightarrow \frac{PE.BE}{DC.DQ}=\frac{BE}{DC}\Rightarrow \frac{PE}{DQ}=1\leftrightarrow PE=DQ\)
c) Gọi \(T\equiv HM\cap IK\)
Ta có \(\widehat{NAK}=\widehat{HBM}(=90^0-\widehat{ACB})(1)\)
Xét tứ giác \(HDKT\) có \(\widehat{HDK}=\widehat{HTK}=90^0\Rightarrow \widehat{DKT}+\widehat{DHT}=180^0\)
\(\Leftrightarrow \widehat{AKN}=\widehat{DKT}=180^0-\widehat{DHT}=\widehat{MHB}(2)\)
Từ \((1),(2)\Rightarrow \triangle NAK\sim \triangle MBH\Rightarrow \frac{NK}{MH}=\frac{NA}{MB}\)
Tương tự, \(\triangle AIN\sim \triangle CHM\Rightarrow \frac{AN}{CM}=\frac{IN}{HM}\)
Từ hai tỉ số trên suy ra \(1=\frac{CM}{BM}=\frac{NK}{IN}\Rightarrow NK=IN\)
Vậy \(N\) là trung điểm của $IK$
a: Ta có: AE+EB=AB
AF+FC=AC
mà AB=AC
và EB=FC
nên AE=AF
hay A nằm trên đường trung trực của FE(1)
Xét ΔEBH và ΔFCH có
EB=FC
\(\widehat{B}=\widehat{C}\)
BH=CH
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
hay H nằm trên đường trung trực của FE(2)
Từ (1) và (2) suy ra E và F đối xứng nhau qua AH