Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/3+1/6+1/10+...+1/x*(2x+1)=1999/2001
2/6+2/12+...2/x(x+1)=1999/2001
2[1/2*3+1/3*4+...+1/x(x+1)]=1999/2001
1/2-1/3+1/3-1/4+...+1/x-1/x+1=1999/2001:2
(1/2-1/x+1)+(1/3-1/3)+...+(1/x-1/x)=1999/4002
1/2-1/x+1=1999/4002
1/x+1=1/2-1999/4002
1/x+1=1/2001
=>(x+1)=2001
x=2001-1
x=2000
Vậy x=2000
a)\(\frac{-15}{18}-\left(x-\frac{1}{3}\right)=\frac{25}{27}\)
\(\frac{-5}{6}-x+\frac{2}{6}=\frac{25}{27}\)
\(\frac{-1}{2}-x=\frac{25}{27}\)
\(x=\frac{-77}{54}\)
Vậy............
b) \(\frac{-3}{5}-\left(2x-\frac{1}{20}\right)=\frac{3}{4}\)
\(\frac{-12}{20}-2x+\frac{1}{20}=\frac{15}{20}\)
\(\frac{-11}{20}-2x=\frac{15}{20}\)
\(2x=\frac{-13}{10}\)
\(x=\frac{-13}{20}\)
Vậy.............
1.
\(a,-\frac{15}{18}-\left(x-\frac{1}{3}\right)=\frac{25}{27}\)
\(-\frac{5}{6}-x+\frac{2}{6}=\frac{25}{27}\)
\(-\frac{1}{2}-x=\frac{25}{27}\)
\(x=-\frac{77}{54}\)
\(b,-\frac{3}{5}-\left(2x-\frac{1}{20}\right)=\frac{3}{4}\)
\(-\frac{12}{20}-2x+\frac{1}{20}=\frac{15}{20}\)
\(-\frac{11}{20}-2x=\frac{15}{20}\)
\(2x=-\frac{13}{10}\)
\(x=-\frac{13}{20}\)
2.
\(a,-\frac{5}{6}\)và \(1,2\)
\(=-\frac{5}{6}\)và \(\frac{12}{10}\)
\(=-\frac{50}{60}\)và \(\frac{72}{60}\)
Nếu như quy đồng 2 số lên thì ta đc \(-\frac{50}{60}< \frac{72}{60}\)
\(\Rightarrow-\frac{5}{6}\)\(< 1,2\)
\(b,\frac{15}{16}\)và \(\frac{17}{18}\)
Theo như những bài toán đã hc thìn ội dung ở cuối bài là phân số nào có tử bé hơn thì có phân số lớn hơn phân số có tử lớn hơn
\(\Rightarrow\frac{15}{16}>\frac{17}{18}\)
\(c,\frac{1999}{2000}\)và \(\frac{2000}{2001}\)
Ta quy đồng
Đc
\(\frac{3999999}{4002000}\)và \(\frac{4000000}{4002000}\)
\(\Rightarrow\frac{1999}{2000}< \frac{2000}{2001}\)
\(3^{400^{100}}\)và \(4^{500^{50}}\)
\(\Rightarrow3^{\left(400^2\right)^{50}}\Leftrightarrow3^{160000^{50}}\)
\(\Rightarrow\left(3^{320}\right)^{500^{50}}\)
mà :\(3^{320}>4\)
\(\Rightarrow3^{400^{100}}>4^{500^{50}}\)
có vì x tăng y giảm nên chúng tỉ lệ nghịch với nhau
Xét các tích \(x.y=1.120=2.60=4.30=5.24=8.15=120\)
=> x và y là hai đại lượng tỉ lệ nghịch
Câu 1 :
\(P=\frac{2n-1}{n-1}\)
Để \(P\inℤ\)Cần \(2n-1⋮n-1\Rightarrow2n-2+1⋮n-1\)\(\Rightarrow2\left(n-1\right)+1⋮n-1\)
Mà \(2\left(n-1\right)⋮n-1\)\(\Rightarrow P\inℤ\Leftrightarrow1⋮n-1\)
\(\Rightarrow n-1\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow n=\left\{0;2\right\}\)
Vậy \(n=0;n=2\)thì \(P\inℤ\)
SO SÁNH Avà B á hay tính z bn
#)Giải :
Ta có :
\(A=\frac{1999^{1999}+1}{1999^{1998}+1}=\frac{1999^{1999}+1999-1998}{1999^{1998}+1}=1999-\frac{1998}{1999^{1998}+1}\)
\(B=\frac{1999^{2000}+1}{1999^{1999}+1}=\frac{1999^{2000}+1999-1998}{1999^{1999}+1}=1999-\frac{1998}{1999^{1999}+1}\)
Vì \(1999^{1998}+1< 1999^{1999}+1\)
\(\Rightarrow\frac{1}{1999^{1998}+1}>\frac{1}{1999^{1999}+1}\Rightarrow1999+\frac{-1}{1999^{1998}+1}< 1999+\frac{-1}{1999^{1999}+1}\Rightarrow A< B\)