Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{9.10}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{10-9}{9.10}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{10}\right)=2.\frac{4}{10}=\frac{4}{5}\)
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)+\left(\dfrac{5}{6}+\dfrac{19}{20}+...+\dfrac{2549}{2550}\right)\)
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+..+\dfrac{1}{50\cdot51}\right)+\left(1-\dfrac{1}{2\cdot3}\right)+\left(1-\dfrac{1}{3\cdot4}\right)+...+\left(1-\dfrac{1}{50\cdot51}\right)\)
\(B=\left(1+1+...+1\right)+\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\)
\(B=1\cdot49=49\) (vì có (50 - 2) : 1 + 1 = 49 số hạng 1)
1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7
=1/1-1/2+1/2-1/3+...-1/7
=1+(1/2-1/2+1/3-1/3+...+1/6-1/6)-1/7
=1 +0+0+...-1/7
=1-1/7
=6/7
a) \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{5}-\frac{1}{10}\)
\(=\frac{1}{10}\)
b) \(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{998.1000}\)
\(=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{998}-\frac{1}{1000}\)
\(=\frac{1}{10}-\frac{1}{1000}\)
\(=\frac{99}{1000}\)
c) \(\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{69.90}\)
\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{89.90}\right)\)
\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{89}-\frac{1}{90}\right)\)
\(=4.\left(1-\frac{1}{90}\right)\)
\(=4.\frac{89}{90}\)
\(=\frac{178}{45}\)
_Chúc bạn học tốt_
1/1*2+1/2*3+1/3*4+...+1/9*10
=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-1/10
=9/10
nho k cho minh voi nhe
\(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ ......... + \(\frac{1}{7.8}\)+ \(\frac{1}{8.9}\)+ \(\frac{1}{9.10}\)
\(=\)\(1\)\(-\)\(\frac{1}{10}\)
\(=\)\(\frac{9}{10}\)
\(A=\frac{1}{2\times3}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{98\times99}\)
\(=\frac{1}{6}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}+...+\frac{1}{98\times99}\)
\(=\frac{1}{6}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}\)
\(=\frac{1}{6}+\frac{1}{4}-\frac{1}{99}=\frac{161}{396}>\frac{160}{400}=\frac{2}{5}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
chúc bn học tốt
\(1,27+2,77+4,27+5,77+...+31,27+32,47\)
\(=\left(1,27+32,77\right)+\left(2,77+31,27\right)+....+\left(16,27+17,77\right)\)
\(=34,04+34,04+....+34,04\)( 11 số hạng)
\(=34,04.11=374,44\)
chúc bn học tốt