Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(x^{10}=1^x\Rightarrow\orbr{\begin{cases}x=1\\x=10\end{cases}}\)
b) \(x^{10}=x\Rightarrow x=1\)
c) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\left(2x-15\right)^5.\left(2x-15\right)^3=\left(2x-15\right)^3\)
\(\left(2x-15\right)^2=1\Rightarrow x=8\)
Bài 2:
\(a;2^{16}=2^{13}\cdot2^3=2^{13}\cdot8>7\cdot2^{13}\)
\(b;49^8\cdot27^5=7^{16}\cdot3^{15}=21^{15}\cdot7>21^5\)
C;Ta có:\(199^{20}< 200^{20}=2^{20}\cdot10^{40}=2^{15}\cdot10^{40}\cdot2^5\)
\(2003^{15}>2000^{15}=2^{15}\cdot10^{45}=2^{15}\cdot10^{40}\cdot10^5\)
Vì 25<105 nên 19920<200315
\(d;3^{39}< 3^{40}=9^{20}< 11^{20}< 11^{21}\)
2002303 = (20023)101
và 303202 = (3032)101
Ta thấy 20023 > 3032 ( vì số mũ và cơ số đều lớn hơn) => (20023)101> (3032)101
a) 5^x=5^78:5^14(lấy 78-14)
5^x=5^64
=> x=64
b) 7^x.7^2=7^21
7^x=7^21:7^2
7^x=7^19
=> x=19
B1:
Ta có: \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}-2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}-2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}.\left(1-5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}\)
\(=\frac{2.\left(-4\right)}{3.5}=-\frac{8}{15}\)
B2:
Ta có: \(1+3+5+...+x=1600\)
\(\Leftrightarrow\frac{\left(x+1\right)\cdot\left(\frac{x-1}{2}+1\right)}{2}=1600\)
\(\Leftrightarrow\left(x+1\right)\cdot\frac{x+1}{2}=3200\)
\(\Leftrightarrow\left(x+1\right)^2=6400\)
Xét theo dãy tăng tiến ta thấy được giá trị của x càng tăng
=> x dương => x + 1 dương
\(\Rightarrow x+1=80\)
\(\Rightarrow x=79\)
a) 8180 < 2790
b) 377 > 738
c) 536 < 1124
d) 291 < 535
Đúng thì k, sai thì thôi
a) <
b) <
c) >
d) =
cảm nơn bạn nhe.