Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(AB^2-BH^2=AC^2-CH^2\left(=AH^2\right)\Rightarrow AB^2+CH^2=AC^2+BH^2\)
b, \(\hept{\begin{cases}EF^2=AE^2+AF^2\\BC^2=AB^2+AC^2\\AE< AB,AF< AC\end{cases}}\Rightarrow EF^2< BC^2\Rightarrow EF< BC\)
c, Tính được BC = 10 cm
\(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH.10=6.8\Rightarrow AH=4,8\left(cm\right)\)
Sau đó áp dụnh định lí Pitago vào tam giác AHB và AHC vuông tại H thì tính được:
BH = 3,6 cm và CH = 6,4 cm
Câu 10: Tam giác ABC vuông tại B suy ra:
A. AB2 = BC2 + AC2
B. BC2 = AB2 + AC2
C. AC2 = AB2 + BC2
D. Cả A, B, C đều đúng
Chúc bạn học tốt!
Ta sẽ chứng minh c là cạnh nhỏ nhất.
Thật vậy,giả sử c không phải là cạnh nhỏ nhất.
Giả sử \(c\ge a\Rightarrow c+c\ge a+c>b\Rightarrow2c>b\Leftrightarrow4c^2>b^2\)
Do \(c\ge a\) nên \(4c^2+c^2=5c^2\ge a^2+b^2\) (trái với gt)
Với \(c\ge b\) chứng minh tương tự của dẫn đến vô lí.
Do đó c là cạnh nhỏ nhất.Khi đó:
\(a+b+c>3c\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o>3.\widehat{C}\Leftrightarrow\widehat{C}< 60^o\) (đpcm)
Không chắc nha!Sai đừng trách.
Giả sử \(c\ge a>0\)\(\Rightarrow c^2\ge a^2\)mà \(a^2+b^2>5c^2\)
\(\Rightarrow a^2+b^2>5a^2\Rightarrow b^2>4a^2\Rightarrow b>2a\) (1)
Vì \(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\Rightarrow b^2>4c^2\Rightarrow b>2c\)(2)
Từ (1) và (2) => 2b>2a+2c => b> a + c (vô lý) => c<a
Tương tự ta được c<b => c là độ dài cạnh nhỏ nhất
=> \(\widehat{C}\)là góc nhỏ nhất \(\Rightarrow\widehat{C}< \widehat{A}\)và \(\widehat{C}< \widehat{B}\)
=> \(3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{C}< 60^o\)
Vậy \(\widehat{C}< 60^o\)(đpcm)
-tự vẽ hình
a) Áp dụng định lý pytago vào tam giác vuông ABH, ta có:
BH2+AH2=AB2
=> AH2=AB2-BH2(1)
Áp dụng định lý pytago vào tam giác vuông AHC ta có:
AH2+HC2=AC2
=> AH2=AC2-HC2(2)
Từ (1) và (2) => AB2-BH2=AC2-HC2 => AB2+HC2=AC2+BH2(chuyển vế đổi dấu)
b) Trên đoạn thẳng AB lấy điểm E => AE<AB, trên đoạn thẳng AC lấy điểm F => AF<AC
Áp dụng định lý pytago vào tam giác vuông EAF ta có:
AE2+AF2=EF2
Áp dụng định lý pytago vào tam giác vuông ABC ta có:
AB2+AC2=BC2
Mà AE<AB(cmt) => AE2<AB2, AF<AC(cmt) => AF2<AC2
=>AE2+AF2<AB2+AC2 hay EF2<BC2=> EF<BC
c) nghĩ chưa/ko ra >:
-bn nào giỏi giải hộ =.=
Ghi lại đề đi bn cho cái j vuông tại B
C