K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(120^3-60\cdot120^2+1200\cdot120-7999\)

\(=120^3-3\cdot120^2\cdot20+3\cdot120\cdot20^2-20^3+1\)

\(=\left(120-20\right)^3+1\)

\(=100^3+1\)

\(=1000001\)

6 tháng 7 2018

MỌI NGƯỜI TRẢ LỜI GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮP

23 tháng 7 2018

c)  \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

d)  \(VT=a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)

I don't now

...............

.................

2 tháng 9 2020

Ta có : \(\left(x-3\right)^3+3.\left(x+1\right)^2=\left(x^2-2x+4\right)\left(x+2\right)\)

\(\Leftrightarrow x^3-9x^2+27x-27+3.\left(x^2+2x+1\right)=x^3+8\)

\(\Leftrightarrow x^3-6x^2+33x-24=x^3+8\)

\(\Leftrightarrow-6x^2+33x-32=0\)

\(\Leftrightarrow6x^2-33x+32=0\)

\(\Leftrightarrow x=\frac{33\pm\sqrt{321}}{12}\)

2 tháng 9 2020

Khai triển HĐT, đơn giản nhất 

PT <=> \(x^3-6x^2+33x-24=x^3+8\)

\(-6x^2+33x-32=0\) ( vô nghiệm ) 

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

3
22 tháng 10 2019

Câu 9.

a) Ta có: \(\left(a-1\right)^2\ge0\)(điều hiển nhiên)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\left(đpcm\right)\)

b) Áp dụng BĐT Cauchy cho 2 số không âm:

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)

22 tháng 10 2019

Câu 10. 

a) Ta có: \(-\left(a-b\right)^2\le0\)(điều hiển nhiên)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

Có: \(2ab\le a^2+b^2;2bc\le b^2+c^2;2ac\le a^2+c^2\)(BĐT Cauchy)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3\left(a^2+b^2+c^2\right)\)

Vậy ​\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

 
7 tháng 9 2017
ở trong sách nào đó bạn
4 tháng 10 2020

a) ( a - b - c )2 - ( a - b + c )2

= [ ( a - b - c ) - ( a - b + c ) ][ ( a - b - c ) + ( a - b + c ) ]

= ( a - b - c - a + b - c )( a - b - c + a - b + c )

= -2c( 2a - 2b )

= -2c.2( a - b )

= -4c( a - b )

b) ( a - x - y )3 - ( a + x - y )3

= [ ( a - x - y ) - ( a + x - y ) ][ ( a - x - y )2 + ( a - x - y )( a + x - y ) + ( a + x - y )2 ]

= ( a - x - y - a - x + y ){ [ ( a - x ) - y ]2 + [ ( a - y ) - x ][ ( a - y ) + x ] + [ ( a + x ) - y ] 2 }

= -2x{ [ ( a - x )2 - 2( a - x )y + y2 ] + [ ( a - y )2 - x2 ] + [ ( a + x )2 - 2( a + x )y + y2 ] }

= -2x{ [ a2 + x2 + y2 - 2ax - 2ay + 2xy ] + [ a2 - x2 + y2 - 2ay ] + [ a2 + x2 + y2 + 2ax - 2ay - 2xy ] }

= -2x{ a2 + x2 + y2 - 2ax - 2ay + 2xy + a2 - x2 + y2 - 2ay + a2 + x2 + y2 + 2ax - 2ay - 2xy }

= -2x{ 3a2 + x2 + 3y2 - 6ay } < trời ơi dài > ;-;