Bài 4: Cho đa thức...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
11 tháng 8 2021

ta có 

\(f\left(5\right)-f\left(4\right)=\left(a.5^3+b.5^2+c.5+d\right)-\left(a.4^3+b.4^2+c.4+d\right)\)

\(=\left(61a+9b+c\right)=2019\)

tương tự ta có : \(f\left(7\right)-f\left(2\right)=335a+45b+5c=30a+5\left(61a+9b+c\right)=30a+5.2019\)

chia hết cho  5 và lớn hơn 2019 , vậy số đã cho là hợp số

1 tháng 1 2019

Bài 1 :

Số số hạng của B là : 

(99 - 1 ) : 1 + 1 = 99 ( số )

Tổng B là :

( 99 + 1 ) x 99 : 2 = 4950

Đ/s:......

1 tháng 1 2019

Bài 2 : 

Số số hạng của C là : ( 999 - 1 ) : 2 + 1 = 500 ( số )

Tổng C là : ( 999 + 1 ) x 500 : 2 = 250000

Đ/s:.....

15 tháng 11 2021

chịu

:::)))

15 tháng 11 2021

Chia \(n^3-n^2+2n+7\) cho \(n^2+1\) , được \(n-1,\) dư \(n+8\)

\(n+8⋮n^2+1\)

\(\Rightarrow\left(n+8\right)\left(n-8\right)=n^2-64⋮n^2+1\)

\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)

Lần lượt cho \(n^2+1\) bằng \(1;5;13;65\) được n bằng \(0;\pm2;\pm8\)

\(Bài 1: B = 1 + 2 + 3 + ... + 98 + 99 Số số hạng: (99 - 1) + 1 = 99 (số hạng) Tổng trên là: (99 + 1) . (98 : 2) + 50 = 4950 Bài 2: C = 1 + 3 + 5 + ... + 997 + 999 Số số hạng: (999 - 1) : 2 +1 = 500 (số hạng) Tổng trên là: (999 + 1) . (500 : 2) = 250 000 Bài 3. D = 10 + 12 + 14 + ... + 994 + 996 + 998 Số số hạng: (998 - 10) : 2 + 1 = 495 (số hạng) Tổng trên là: (998 + 10) . (494 : 2) + 248 = 249 224\)

Cậu có thể lên trên mạng tham khảo nhé

=1.2+2.3+3.4+.............+n(n+1) 
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1) 
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n) 
ta có các công thức: 
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6 
1 + 2 + 3 + ...+ n = n(n+1)/2 
thay vào ta có: 
S = n(n+1)(2n+1)/6 + n(n+1)/2 
=n(n+1)/2[(2n+1)/3 + 1] 
=n(n+1)(n+2)/3

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

mình quên rồi có gì các bạn chỉ dùm

27 tháng 5 2019

A=1.2+2.3+3.4+...+n.(n+1)=[n.(n+1).(n+2)]:3

B=1.2.3+2.3.4+...+(n-1).n.(n+1)=[(n-1).n.(n+1).(n+2)]:4

easy như 1 trò đùa                                                                 

Bài 1: Cho đa thức f(x) = ax3 + 2bx2 + 3cx + 4d, (a ≠ 0) với a, b, c, d là các số nguyên. Chứng minh không thể tồn tại f(7) = 72 và f(3) = 42.Bài 2: Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.Bài 3: Cho hàm số f(x) = ax2 + bx + c (a, b, c ∈ ). Biết f(-1) ⋮ 3; f(0) ⋮ 3; f(1) ⋮ 3. Chứng minh rằng a, b, c đều chia hết cho 3.Bài 4: Cho đa thức f(x)...
Đọc tiếp

Bài 1: Cho đa thức f(x) = ax3 + 2bx2 + 3cx + 4d, (a ≠ 0) với a, b, c, d là các số nguyên. Chứng minh không thể tồn tại f(7) = 72 và f(3) = 42.

Bài 2: Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.

Bài 3: Cho hàm số f(x) = ax2 + bx + c (a, b, c ∈ \mathbb{Z}). Biết f(-1) ⋮ 3; f(0) ⋮ 3; f(1) ⋮ 3. Chứng minh rằng a, b, c đều chia hết cho 3.

Bài 4: Cho đa thức f(x) = ax3 + bx2 + cx + d với a là số nguyên dương và f(5) - f(4) = 2019. Chứng minh f(7) - f(2) là hợp số.

Bài 5: Chứng minh rằng đa thức P\left( x \right) = {x^3} - x + 5 không có nghiệm nguyên.

Bài 6: Tìm giá trị nhỏ nhất của biểu thức {\left[ {{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{5}{4}} \right]^2}

Bài 7: Tìm n nguyên dương sao cho 2n - 3 ⋮ n + 1

Bài 8: Cho đa thức M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017. Tính giá trị của đa thức M biết x + y - 2 = 0.

0
6 tháng 3 2019

Giải :

Hình vẽ ; giả thiết, kết luận đã được đầu bài cho sẵn.

Chứng minh :

Xét \(\Delta AMC\text{ và }\Delta BMD\), có :

\(MA=MB\text{ (gt)}\)

\(\angle AMC=\angle DMB\text{ (đối đỉnh)}\)

\(DM=CM\text{ (gt)}\)

\(\Rightarrow\Delta AMC=\Delta BMD\text{ (c.g.c)}\)

10 tháng 3 2019

b/ Ta có : \(\bigtriangleup AMC=\bigtriangleup BMD\text{ (c.m.t)}\)

\(\Rightarrow\widehat{DBM}=\widehat{ACM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (1)

\(\Rightarrow BD//AC\)

Xét \(\bigtriangleup DMA\text{ và }\bigtriangleup BMC,\text{ có :}\)

\(\widehat{DMA}=\widehat{BMC}\text{ (đối đỉnh)}\)

\(DM=CM\left(gt\right)\)

\(BM=AM\left(gt\right)\)

\(\Rightarrow\bigtriangleup DMA=\bigtriangleup BMC\left(c.g.c\right)\)

\(\Rightarrow\widehat{ADM}=\widehat{DCM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (2)

\(\text{Từ (1) và (2) suy ra tứ giác ABCD là hình bình hành}\) (3)

\(\angle ACB=90^{\text{o}}\) (4)

\(\text{T}ừ\text{ (3) và (4) suy ra hình bình hành ABCD là hình chữ nhật}\) (đpcm)

16 tháng 5 2016

phải là f(x)=ax3+bx2+cx+d nhé bn!
 

16 tháng 5 2016

\(f\left(x\right)=ax^3+bx^2+cx+d\)

Ta có: \(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\left(1\right)\)

\(f\left(-2\right)=a.\left(-2\right)^3+b.\left(-2\right)^2+c.\left(-2\right)+d=-8a+4b-2c+d\left(2\right)\)

Trừ (2) cho (1),vế theo vế:

\(f\left(-2\right)-f\left(1\right)=\left(-8a+4b-2c+d\right)-\left(a+b+c+d\right)\)

\(=-8a+4b-2c+d-a-b-c-d=\left(-8a-a\right)+\left(4b-b\right)+\left(-2c-c\right)+\left(d-d\right)\)

\(=-9a+3b-3c=3.\left(-3a+b-c\right)\)

thiếu đề rồi!

NM
11 tháng 8 2021

ta có \(\hept{\begin{cases}f\left(-1\right)=a-b+c\\f\left(0\right)=c\\f\left(1\right)=a+b+c\end{cases}}\) 

vậy c chia hết cho 3 và \(\hept{\begin{cases}a+b\\a-b\end{cases}\text{ chia hết cho 3}}\) 

cộng lại ta có 2a chia hết cho 3 hay a chia hết cho 3

lấy hiệu ta có 2b chia hết cho3 hay b chia hết cho 3

9 tháng 5 2024

????????

19 tháng 6 2020

Ta có:

\(f\left(5\right)=125a+25b+5c+d\)

\(f\left(4\right)=64a+16b+4c+d\)

\(f\left(7\right)=343a+49b+7c+d\)

\(f\left(2\right)=8a+4b+2c+d\)

Xét:

\(f\left(5\right)-f\left(4\right)=125a+25b+5c+d-64a-16b-4c-d\)

\(=61a+9b+c=2019\)

Khi đó:

\(f\left(7\right)-f\left(2\right)=343a+49b+7c+d-8a-4b-2c-d\)

\(=335a+45b+5c=5\left(61a+9b+c\right)+30=5\cdot2019+30⋮5\)

Vậy ta có đpcm

14 tháng 12 2021

phải là 30a chứ bạn