Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Bài 1: B = 1 + 2 + 3 + ... + 98 + 99 Số số hạng: (99 - 1) + 1 = 99 (số hạng) Tổng trên là: (99 + 1) . (98 : 2) + 50 = 4950 Bài 2: C = 1 + 3 + 5 + ... + 997 + 999 Số số hạng: (999 - 1) : 2 +1 = 500 (số hạng) Tổng trên là: (999 + 1) . (500 : 2) = 250 000 Bài 3. D = 10 + 12 + 14 + ... + 994 + 996 + 998 Số số hạng: (998 - 10) : 2 + 1 = 495 (số hạng) Tổng trên là: (998 + 10) . (494 : 2) + 248 = 249 224\)
=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
mình quên rồi có gì các bạn chỉ dùm
A=1.2+2.3+3.4+...+n.(n+1)=[n.(n+1).(n+2)]:3
B=1.2.3+2.3.4+...+(n-1).n.(n+1)=[(n-1).n.(n+1).(n+2)]:4
easy như 1 trò đùa
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
Số số hạng của B là : 99 số hạng
Tổng của B là ( 1 + 99 ) x 99 : 2 = 4950
Vậy : B = 1 + 2 + 3 + ... + 98 + 99 = 4950
Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999
Số số hạng của C là : ( 999 - 1 ) : 2 + 1 = 500 ( số hạng )
Tổng của C là : ( 1 + 999 ) x 500 : 2 = 250000
Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
Số số hạng của D là : ( 998 - 10 ) : 2 + 1 = 495 ( số hạng )
Tổng của D là : ( 10 + 998 ) x 495 : 2 = 249480
!)
B=1+2+3+...+98+99
B= 99(99+1):2
B = 4950
( Áp dụng: Nếu B=1+2+3+...+(n-1)+n
thì B=n(n+1):2
B=4950 nha bạn!
2) Tính: C=1+3+5+...+997+999
Ta có: 999= 2(500)-1. n=500
1+2+3+...+(2n-1)= n^2
= 500^2= 250.000
C=25.000
Chia \(n^3-n^2+2n+7\) cho \(n^2+1\) , được \(n-1,\) dư \(n+8\)
\(n+8⋮n^2+1\)
\(\Rightarrow\left(n+8\right)\left(n-8\right)=n^2-64⋮n^2+1\)
\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)
Lần lượt cho \(n^2+1\) bằng \(1;5;13;65\) được n bằng \(0;\pm2;\pm8\)
Giải :
Hình vẽ ; giả thiết, kết luận đã được đầu bài cho sẵn.
Chứng minh :
Xét \(\Delta AMC\text{ và }\Delta BMD\), có :
\(MA=MB\text{ (gt)}\)
\(\angle AMC=\angle DMB\text{ (đối đỉnh)}\)
\(DM=CM\text{ (gt)}\)
\(\Rightarrow\Delta AMC=\Delta BMD\text{ (c.g.c)}\)
b/ Ta có : \(\bigtriangleup AMC=\bigtriangleup BMD\text{ (c.m.t)}\)
\(\Rightarrow\widehat{DBM}=\widehat{ACM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (1)
\(\Rightarrow BD//AC\)
Xét \(\bigtriangleup DMA\text{ và }\bigtriangleup BMC,\text{ có :}\)
\(\widehat{DMA}=\widehat{BMC}\text{ (đối đỉnh)}\)
\(DM=CM\left(gt\right)\)
\(BM=AM\left(gt\right)\)
\(\Rightarrow\bigtriangleup DMA=\bigtriangleup BMC\left(c.g.c\right)\)
\(\Rightarrow\widehat{ADM}=\widehat{DCM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (2)
\(\text{Từ (1) và (2) suy ra tứ giác ABCD là hình bình hành}\) (3)
\(\angle ACB=90^{\text{o}}\) (4)
\(\text{T}ừ\text{ (3) và (4) suy ra hình bình hành ABCD là hình chữ nhật}\) (đpcm)
D=10+12+14+...+994+996+998
=10+(12+998)+(16+996)+...+(500+500)
=10+1010+1010+...+1010
=10+1010*247(Ta tính số số hạng /2)
=10+249470=249480
tk cho mk nha
Số số hạng của D là :
(998-10):2+1=500(Số hạng)
Tổng của D là:
(998+10)x500:2=252000
Vậy D=252000
Bn kiểm ra lại bg máy nha ~k giùm mk nếu ddungs~ thankđã tt
Số số hạng : ( 998 - 10 ) : 2 + 1 = 495
Tổng : ( 998 + 10 ) . 495 : 2 = 249480
Vậy D = 249480
S=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2) / 3
3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] /3
Bài 1 :
Số số hạng của B là :
(99 - 1 ) : 1 + 1 = 99 ( số )
Tổng B là :
( 99 + 1 ) x 99 : 2 = 4950
Đ/s:......
Bài 2 :
Số số hạng của C là : ( 999 - 1 ) : 2 + 1 = 500 ( số )
Tổng C là : ( 999 + 1 ) x 500 : 2 = 250000
Đ/s:.....