Cho n số x<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:
Vì $x_1,x_2,...,x_n$ nhận giá trị $1$ hoặc $-1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ nhận giá trị $1$ hoặc $-1$

Để tổng $x_1x_2+...+x_nx_1=0$ thì số số hạng nhận giá trị $1$ bằng số số hạng nhận giá trị $-1$

Gọi số số hạng nhận giá trị $1$ và số số hạng nhận giá trị $-1$ là $k$

Tổng số số hạng: $n=k+k=2k$ 

Lại có:

$(-1)^k1^k=x_1x_2.x_2x_3...x_nx_1=(x_1x_2...x_n)^2=1$

$\Rightarrow k$ chẵn 

$\Rightarrow n=2k\vdots 4$

22 tháng 11 2021

bạn thông minh ghê

1 tháng 1 2019

Bài 1 :

Số số hạng của B là : 

(99 - 1 ) : 1 + 1 = 99 ( số )

Tổng B là :

( 99 + 1 ) x 99 : 2 = 4950

Đ/s:......

1 tháng 1 2019

Bài 2 : 

Số số hạng của C là : ( 999 - 1 ) : 2 + 1 = 500 ( số )

Tổng C là : ( 999 + 1 ) x 500 : 2 = 250000

Đ/s:.....

15 tháng 11 2021

chịu

:::)))

15 tháng 11 2021

Chia \(n^3-n^2+2n+7\) cho \(n^2+1\) , được \(n-1,\) dư \(n+8\)

\(n+8⋮n^2+1\)

\(\Rightarrow\left(n+8\right)\left(n-8\right)=n^2-64⋮n^2+1\)

\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)

Lần lượt cho \(n^2+1\) bằng \(1;5;13;65\) được n bằng \(0;\pm2;\pm8\)

\(Bài 1: B = 1 + 2 + 3 + ... + 98 + 99 Số số hạng: (99 - 1) + 1 = 99 (số hạng) Tổng trên là: (99 + 1) . (98 : 2) + 50 = 4950 Bài 2: C = 1 + 3 + 5 + ... + 997 + 999 Số số hạng: (999 - 1) : 2 +1 = 500 (số hạng) Tổng trên là: (999 + 1) . (500 : 2) = 250 000 Bài 3. D = 10 + 12 + 14 + ... + 994 + 996 + 998 Số số hạng: (998 - 10) : 2 + 1 = 495 (số hạng) Tổng trên là: (998 + 10) . (494 : 2) + 248 = 249 224\)

Cậu có thể lên trên mạng tham khảo nhé

=1.2+2.3+3.4+.............+n(n+1) 
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1) 
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n) 
ta có các công thức: 
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6 
1 + 2 + 3 + ...+ n = n(n+1)/2 
thay vào ta có: 
S = n(n+1)(2n+1)/6 + n(n+1)/2 
=n(n+1)/2[(2n+1)/3 + 1] 
=n(n+1)(n+2)/3

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

mình quên rồi có gì các bạn chỉ dùm

27 tháng 5 2019

A=1.2+2.3+3.4+...+n.(n+1)=[n.(n+1).(n+2)]:3

B=1.2.3+2.3.4+...+(n-1).n.(n+1)=[(n-1).n.(n+1).(n+2)]:4

easy như 1 trò đùa                                                                 

24 tháng 5 2017

a) Vì BE là đường trung tuyến \(\Delta ABC\) => AE = CE

CF là đường trung tuyến \(\Delta ABC\) => AF = BF

mà AB = AC ( \(\Delta ABC\) cân tại A )

Do đó: AE = CE = AF = BF

Xét \(\Delta ABE\)\(\Delta ACF\) có:

AB = AC (gt)

\(\widehat{A}\) (chung)

AE = AF (cmt)

Do đó : \(\Delta ABE=\Delta ACF\left(c-g-c\right)\)

=> BE = CF (hai cạnh tương ứng)

b) Gọi H là giao điểm của AG và BC

Vì BE và CF là hai đường trung tuyến \(\Delta ABC\)

mà BE và CF cắt nhau tại G

=> G là trọng tâm

=> AH là đường trung tuyến \(\Delta ABC\)

=> BH = CH

\(\Delta ABC\) cân

=> AH là đường cao \(\Delta ABC\)

Xét \(\Delta GBH\)\(\Delta GCH\) có:

GH (chung)

\(\widehat{BHG}=\widehat{CHG}=90^0\)

BH = CH (cmt)

Do đó: \(\Delta BGH=\Delta CGH\) (c - g - c )

=> BG = CG ( hai cạnh tương ứng )

=> \(\Delta BGC\) cân tại G

24 tháng 5 2017

a. Ta có: AE = 1/2 AC (BE là đường trung tuyến của AC)

AF = 1/2 AB (CF là đường trung tuyến của AB)

Mà AB = AC (tam giác ABC cân tại A)

=> AE = AF

Xét tam giác ABE và tam giác ACF có:

AB = AC (tam giác ABC cân tại A)

Góc BAC chung

AE = AF (cmt)

=> tam giác ABE = tam giác ACF (c.g.c)

=> BE = CF

b. Xét tam giác ABC có :

BE và CF là hai đường trung tuyến của tam giác ABC

BE và CF cắt nhau ở G

=> G là trọng tâm của tam giác ABC

=> BG = 2/3 BE ; CG = 2/3 CF

Mà BE = CF (câu a)

=> BG = CG

=> tam giác BGC cân tại G

23 tháng 1 2022

Theo giả thiết suy ra các tích x1x2 , x2x3 , …., xnx1 chỉ nhận một trong hai giá trị là 1 và -1

Do đó x1x2 + x2x3 +…+ xnx1 = 0 <=> n = 2m

=> Đồng thời có m số hạng bằng 1 và m số hạng bằng -1

Nhận thấy : (x1x2)(x2x3)…(xnx1) = x12x22…xn2 = 1

=> Số các số hạng bằng -1 phải là số chẵn

=> m = 2k

Suy ra n = 2m = 2.2k = 4k

=> n chia hết cho 4