K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

\(x^4+\sqrt{x^2+2002}=2002\)

Đặt \(\sqrt{x^2+2002}=a^2>0\)

\(\Rightarrow\hept{\begin{cases}x^4+a^2=2002\left(1\right)\\a^4-x^2=2002\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được

\(x^4-a^4+x^2+a^2=0\)

\(\Leftrightarrow\left(x^2+a^2\right)\left(x^2-a^2+1\right)=0\)

\(\Leftrightarrow x^2+1=a^2=\sqrt{x^2+2002}\)

\(\Leftrightarrow x^4+2x^2+1=x^2+2002\)

\(\Leftrightarrow x^4+x^2-2001=0\)

Tới đây thì đơn giản rồi

28 tháng 7 2017

\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow\left(x^2+3x+1\right)^2=\left(x+3\right)^2\left(x^2+1\right)\)

\(\Leftrightarrow x^2=8\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{8}\\x=-\sqrt{8}\end{cases}}\)

9 tháng 9 2017

c1 cậu đặt cái trong căn =a

=>pt<=> a^2-2x=2xa-a

c2 cậu đưa về dang a^2=b^2

9 tháng 9 2017

bài 2 nhé 

đặt \(a=\sqrt{x+2}\)

ta có pt<=> 

\(2a^3=3x\left(x+2\right)-x^3\Leftrightarrow2a^3=3xa^2-x^3\)

\(\Leftrightarrow2a^3-3xa^2+x^3=0\Leftrightarrow2a^3-2a^2x+x^2-xa^2=0\)

\(\Leftrightarrow\left(a-x\right)\left(2a^2-ax-x^2\right)\)

5 tháng 11 2018

ĐKXĐ : x\(\ge0\)

ADBĐT BCS ta được

\(\left(\frac{x^2}{3}+4\right)\left(3+1\right)\ge\left(x+2\right)^2\)

\(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge2x+4\)(do x\(\ge0\))    (1)

Do x\(\ge0\)nên ADBĐT Cauchy ta được:

\(\sqrt{6x}\le\frac{x+6}{2}\)\(\Rightarrow1+\frac{3x}{2}+\sqrt{6x}\le1+\frac{3x}{2}+\frac{x+6}{2}=1+\frac{4x+6}{2}=2x+4\)(2)

Từ (1) và (2) \(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge1+\frac{3x}{2}+\sqrt{6x}\)

Dấu = xảy ra \(\Leftrightarrow x=6\)(thỏa mãn ĐKXĐ)

6 tháng 11 2018

3) ĐKXĐ \(-1\le x\le1\)

Khi đó phương trình đã cho \(\Leftrightarrow4\left(\sqrt{1+x}+\sqrt{1-x}\right)=8-x^2\)

\(\Leftrightarrow\hept{\begin{cases}16\left(2+2\sqrt{1-x^2}\right)=\left(7+1-x^2\right)\left(2\right)\\8-x^2\ge0\end{cases}}\)

Đặt \(\sqrt{1-x^2}=a\ge0\)

Khi đó phương trình (2) trở thành: 

\(\hept{\begin{cases}16\left(2+2a\right)=\left(7+a^2\right)\\x^2\le8\end{cases}}\)

\(\Leftrightarrow a^4+14a^2+49=32+32a\)

\(\Leftrightarrow a^4+14a^2-32a+17=0\)

\(\Leftrightarrow a^4-2a^2+1+16a^2-32a+16=0\)

\(\Leftrightarrow\left(a^2-1\right)^2+16\left(a-1\right)^2=0\)

\(\Leftrightarrow a=1\)

hay \(\sqrt{1-x^2}=1\)

\(\Leftrightarrow x=0\)(thỏa mãn)

21 tháng 1 2018

5(+x)-4=24

21 tháng 1 2018

8

14 tháng 9 2017

1) ĐK: \(x\ge-2012\)

Đặt \(\sqrt{x+2012}=t\left(t\ge0\right)\Rightarrow x=t^2-2012\)

Ta có hệ \(\hept{\begin{cases}x^2+t=2012\\-x+t^2=2012\end{cases}}\)

\(\Rightarrow x^2+t-t^2+x=0\Rightarrow\left(x+t\right)\left(x-t+1\right)=0\)

Với \(x+t=0\Leftrightarrow\sqrt{x+2012}=x\Rightarrow x^2-x-2012=0\Rightarrow x=\frac{\sqrt{8049}+1}{2}\)

Với \(x-t+1=0\Leftrightarrow\sqrt{x+2012}=x+1\Rightarrow x^2+x-2011=0\Rightarrow x=\frac{\sqrt{8045}-1}{2}\)

2) ĐK \(\orbr{\begin{cases}x< -\frac{1}{3}\\x>1\end{cases}}\)

Đặt \(\sqrt{\frac{3x+1}{x-1}}=t\), phương trình trở thành \(4t+\frac{1}{t}=4\Rightarrow\frac{4t^2-4t+1}{t}=0\Rightarrow t=\frac{1}{2}\)

Khi đó ta có \(\sqrt{\frac{3x+1}{x-1}}=\frac{1}{2}\Rightarrow\frac{3x+1}{x-1}=\frac{1}{4}\Rightarrow11x+5=0\)

\(\Rightarrow x=-\frac{5}{11}\left(tm\right)\)

c) TH1: \(x\le-1\), phương trình trở thành \(\left(x-3\right)\left(x+1\right)-4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)

Đặt \(\sqrt{\left(x-3\right)\left(x+1\right)}=t\left(t\ge0\right)\) thì \(t^2-4t+3=0\Rightarrow\orbr{\begin{cases}t=1\\t=3\end{cases}}\)

Với \(t=1\Rightarrow\left(x-3\right)\left(x+1\right)=1\Rightarrow x^2-2x-4=0\Rightarrow\orbr{\begin{cases}x=1+\sqrt{5}\left(l\right)\\x=1-\sqrt{5}\left(tm\right)\end{cases}}\)

Với \(t=3\Rightarrow\left(x-3\right)\left(x+1\right)=9\Rightarrow x^2-2x-12=0\Rightarrow\orbr{\begin{cases}x=1+\sqrt{13}\left(l\right)\\x=1-\sqrt{13}\left(tm\right)\end{cases}}\)

Với \(x>3\), phương trình trở thành \(\left(x-3\right)\left(x+1\right)+4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)

Đặt \(\sqrt{\left(x-3\right)\left(x+1\right)}=t\left(t\ge0\right)\) thì \(t^2+4t+3=0\Rightarrow\orbr{\begin{cases}t=-1\\t=-3\end{cases}\left(l\right)}\)

Vậy pt có 2 nghiệm \(x=1-\sqrt{5}\) hoặc \(x=1-\sqrt{13}\)