Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-8x-15=x2-8x+16-31=(x-4)2-31=\(\left(x-4-\sqrt{31}\right).\left(x-4+\sqrt{31}\right)\)
a) ( x-2 )( x - 4 )( x - 6 )( x -8 ) + 15
= ( x- 2 )( x - 8 )( x - 4)( x- 6 ) + 15
= ( x^2 - 10x + 16 )( x^2 - 10x + 24 ) + 15
Đắt x^2 + x + 16 = y
= y ( y + 8 ) + 15
= y^2 + 8y + 15
= y^2 + 3y + 5y + 15
=y ( y + 3 ) + 5 ( y + 3 )
= ( y+ 5)( y + 3)
Thay vào
\(x^3-x^2+2\)
\(=x^3+x^2-2x^2-2x+2x+2\)
\(=x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+2\right)\)
x^3-x^2+2 = (x^3+1)-(x^2-1) = (x+1).(x^2-x+1)-(x-1).(x+1)
= (x+1).(x^2-x+1-x+1)
= (x+1).(x^2-2x+2)
Tk mk nha
câu a:
\(=x^2+6x-x+6\)
\(=\left(x^2-x\right)-\left(6x-6\right)\)
\(=x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(x-6\right)\left(x-1\right)\)
câu b:
\(=x^2+5x-x-5\)
\(=x^2-x+5x-5\)
\(=x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x+5\right)\left(x-1\right)\)
a, x2 + 5x +6
= x2 - 6x-x +6
= x(x-6)-(x-6)
=( x-1)(x-6)
b, x2+4x-5
= x2+ 5x -x -5
= x(x+5)-(x+5)
=(x-1)(x+5)
Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
a) \(x^7+x^5+1\)
\(=x^7-x+x^5-x^2+x^2+x+1\)
\(=x\left(x^6-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)]
\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+x^2\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[x\left(x^4-x^3+x-1\right)+x^3-x^2+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
b) \(x^5-x^4-1\)
\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
\(x^2-x-30\)
\(=x^2+5x-6x-30\)
\(=x\left(x+5\right)-6\left(x+5\right)\)
\(=\left(x+5\right)\left(x-6\right)\)
\(x^2+5x-6x-30\)
\(=x\left(x+5\right)-6\left(x+5\right)\)
\(=\left(x-6\right)\left(x+5\right)\)