Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(\(\forall\):kí hiệu này nghĩa là với mọi)
Ta có: \(\left(x-2013\right)^2\ge0,\forall x\in N\)
\(\Rightarrow7\left(x-2013\right)^2\ge0,\forall x\in N\)
Mà \(7\left(x-2013\right)^2=23-y^2\)
\(\Rightarrow23-y^2\ge0,\forall y\in N\)
Vì\(y\in N\)
\(\Rightarrow y^2\in\left\{1;4;9;16\right\}\)
\(\Rightarrow\)ta có bảng giá trị:
\(y^2\) | \(1\) | \(4\) | \(9\) | \(16\) |
\(7\left(x-2013\right)^2=23-y^2\) | \(22\) | \(19\) | \(14\) | \(7\) |
\(y\) | \(\pm1\) | \(\pm2\) | \(\pm3\) | \(\pm4\) |
\(x\in N\) | loại | loại | loại | 2014 |
Vậy, \(\left(x;y\right)=\left(2014;\pm4\right)\)
a. Từ giả thiết ta có x > y.
\(2^x-2^y=2^4\Rightarrow2^y\left(2^{x-y}-1\right)=2^4\). Do \(2^{x-y}-1\) không chia hết cho 2 với mọi x khác y nên để thỏa mãn đẳng thức trên thì \(2^{x-y}-1=1\Rightarrow x-y=1\)
Khi đó \(2^y=2^4\Rightarrow y=4\Rightarrow x=5.\)
b . Do vai trò x, y như nhau nên giả sử \(x\ge y.\)
\(2^x+2^y=2^4\Rightarrow2^y\left(2^{x-y}+1\right)=2^4\) Lập luận tương tự ta có \(2^{x-y}+1=1\Rightarrow x=y\).
Khi đó \(2.2^y=2^4\Rightarrow y=3\Rightarrow x=3.\)
\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)
\(\Rightarrow\left(2^x+1\right)\left(2^x+4\right)\left(2^x+2\right)\left(2^x+3\right)=11879+5^y\)
\(\Rightarrow\left(2^{2x}+5.2^x+4\right)\left(2^{2x}+5.2^x+6\right)=11879+5^y\)(1)
Đặt \(2^{2x}+5.2^x+4=k\)
\(\left(1\right)\)trở thành: \(t\left(t+2\right)=11879+5^y\)
\(\Rightarrow t^2+2t+1=11880+5^y\)
\(\Rightarrow\left(t+1\right)^2=11880+5^y\)
hay \(\left(2^{2x}+5.2^x+5\right)^2=11880+5^y\)
+) Xét y = 0 thì \(\left(2^{2x}+5.2^x+5\right)^2=11881\)
\(\Rightarrow2^{2x}+5.2^x+5=109\)
\(\Rightarrow2^{2x}+5.2^x=104\Rightarrow2^x\left(8+5\right)=104\)
\(\Rightarrow2^x=8\Rightarrow x=3\)
+) Xét \(y>0\)thì \(11880+5^y⋮5\)
Mà \(\left(2^{2x}+5.2^x+5\right)^2\)không chia hết cho 5 nên loại y >0
Vậy y = 0; x = 3
Anh có cách này khác nè, em tham khảo nhé !!
Ta có : \(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\)
mà : \(2^x⋮̸5\) \(\Rightarrow\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\)
Mặt khác \(11879⋮̸5\Rightarrow5^y⋮̸5\)
\(\Rightarrow y=0\)
\(\Rightarrow\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=11880=9\cdot10\cdot11\cdot12\)
\(\Rightarrow x=3\) ( thỏa mãn )
Vậy : \(x=3,y=0\) thỏa mãn đề.
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị