Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2: Một người kéo một thùng nước có khối lượng 15kg từ giếng sâu h=8m lên, chuyển động nhanh dần đều trong 4s. lấy \(g=10m/s^2\) Tính công và công suất của người đó.
_______________________________________________
\(h=\frac{1}{2}at^2\)
\(8=\frac{1}{2}a.4^2\)
\(a=1m/s\)
\(F-P=ma\)
\(F=ma+P=15.1+15.10=165N\)
\(A=Fs=165.8=20,625J\)
\(P=\frac{A}{t}=\frac{20,625}{4}=5,15625W\)
Vậy ............
Câu 1
\(p=\sqrt{p_1^2+P_2^2}=\sqrt{\left(1.3\right)^2+\left(4.1\right)^2}=5\)
Câu 2
\(m=15\left(kg\right)\)
\(h=S=8m\)
\(t=4s\)
\(g=10\left(\frac{m}{s^2}\right)\)
a. Tính A = ?
Quãng đường mà thùng nước đi được :
\(S=\frac{1}{2}at^2\rightarrow a=\frac{2S}{t^2}=\frac{2.8}{4^2}=1\left(\frac{m}{s^2}\right)\)
Theo định luật II Niuton ta có : vectoP + vectoF = m.vecto a
\(\rightarrow F=P+ma\)
\(\rightarrow F=mg+ma\)
\(\rightarrow F=15.10+15,1=165\left(N\right)\)
- Công của lực kéo tính theo công thức : \(A=F.S\)
\(\rightarrow A=F.S\)
\(\rightarrow A=165.8=1320\left(J\right)\)
b . Tính: P = ?
- Công suất của người ấy tính theo công thức : \(P=\frac{A}{t}\)
\(\rightarrow P=\frac{1320}{4}=330\left(W\right)\)
thời gian để xe đến C là
\(t=\frac{s_{BC}}{v}=\frac{50}{9}s\)
để gặp được xe mà đi với đoạn đường ngắn nhất thì người đó phải đi trên đoạn đường vuông gốc với BC
vậy vận tốc người đi bộ là
\(v=\frac{d}{t}=7,2\)m/s
sau 50/9s thì hai vật gặp nhau
Đề bài không cho khối lượng nên mình cũng đang thắc mắc . Các bạn giúp mình nha.
Ta có : \(T=\frac{2\pi}{\omega}\)
\(\omega=\frac{\Delta\alpha}{\Delta t}=\frac{\pi}{2\Delta t}\)
\(\rightarrow T=\frac{2\pi}{\frac{\pi}{2\Delta t}}=\frac{2\pi.2\Delta t}{\pi}=4\Delta t\)
=> \(\Delta t=\frac{T}{4}\)
Chọn D.
Chọn đáp án A