K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

Thay x = -2 vào phương trình m x 2  – x – 5 m 2  = 0 ta được:

m - 2 2 – (-2) – 5 m 2  = 0

⇔ - 5 m 2  + 4m + 2 = 0

⇔ 5 m 2  – 4m - 2 = 0 (Có a = 5; b = -4 nên b’ = - 2; c = - 2)

∆ ' =  - 2 2  -5.(-2) = 4 + 10 = 14 > 0

∆ ' = 14

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

21 tháng 3 2018

a) Thay x=-3 vào phương trình 2x2 – m2x +18m =0 ta được:

2(-3)2 - m2(-3) + 18m =0 ⇔ 3m2 +18m+18 =0

⇔ m2 + 6m +6 = 0

Δ' = 32 -1.6 = 9 -6 =3 > 0

√Δ' = √3

Phương trình có 2 nghiệm phân biệt:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy với m=3 - 3 hoặc m=- 3- 3 thì phương trình đã cho có nghiệm x= -3

b) Thay x = -2 vào phương trình mx2 – x – 5m2 = 0 ta được:

m(-2)2 – (-2) – 5m2=0 ⇔ 5m2 – 4m -2 =0

Δ' = (-2)2 -5.(-2) = 4+10 = 14 > 0

√Δ' = √14

Phương trình có 2 nghiệm phân biệt:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

7 tháng 4 2018

bạn làm được bài này chưa cho mình xin lời giải

7 tháng 1 2018

(Bạn viết phương trình nhé, nó dài nên ngại viết lắm =.=) (a = 1; b' = - m - 1; c = m ^ 2) 

Xét phương trình trên có a = 1 khác 0 => Phương tình là phương trình bậc 2 một ẩn 

Để phương trình có 2 nghiệm phân biệt <=> \(\Delta'>0\)

                                                                <=> b' ^ 2 - ac > 0

                                                                <=> (- m - 1) ^ 2 - 1. m ^ 2 > 0

                                                                <=> m ^2 + 2m + 1 - m ^ 2 > 0 

                                                                <=> 2m + 1 > 0

                                                                <=> 2m > - 1

                                                                <=> m > - 0,5

Vậy để phương trrình có 2 nghiệm phân biệt thì m > - 0,5

7 tháng 1 2018

Đề phòng bạn không biết thôi nha: \(ax^2+bx+c=0\)

                                                      b = 2b'

                                      \(\Delta'=b'2-ac\)

                 \(\Delta'\)> 0 thì pt có 2 nghiệm phân biệt, = 0 thì có nghiệm kép, < 0 thì vô nghiệm, tóm lại là như\(\Delta\)thôi

4 tháng 4 2017

a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2

∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m

b) Ta có ∆’ = 1 – 2m

Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m < \(\dfrac{1}{2}\)

Phương trình vô nghiệm khi m > \(\dfrac{1}{2}\)

Phương trình có nghiệm kép khi m = \(\dfrac{1}{2}\).

4 tháng 4 2017

a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2

∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m

b) Ta có ∆’ = 1 – 2m

Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m <

Phương trình vô nghiệm khi m >

Phương trình có nghiệm kép khi m = .



5 tháng 2 2020

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

31 tháng 12 2017

ta có phương trình x^2 +3x +m =0 

nên để pt có 2 nghiệm phân biệt thì 9 - 4m > 0 hay m <9/4

theo Viét  nếu x1 và x2 là 2 nghiệm của pt thì 

x1 +x2 =-3 (1)và

x1*x2=m  => 2x1*x2 =2m (2)

=> x1^2 +x2^2 +2m = (x1 +x2 )^2 (từ (1) và (2) )( cái hằng đẳng thức chắc bạn phải biết r đúng ko )

mà x1 +x2 =-3 ,,,x1^2 +x2^2 = 31 nên ta có

31 +2m =9 

m = -11

31 tháng 12 2017

vưa nãy mình -   nhầm 31 + 2m =9  thì m= -12 mới phải (hi  hi )

5 tháng 4 2017

Xét phương trình 7x2 + 2(m – 1)x – m2 = 0 (1)

a) Phương trình có nghiệm khi ∆’ ≥ 0

Ta có: ∆’ = (m – 1)2 – 7(-m2) = (m – 1)2 + 7m2 ≥ 0 với mọi m

Vậy phương trình (1) luôn luôn có nghiệm với mọi giá trị của m

b) Gọi x1, x2 là hai nghiệm của phương trình (1)

Ta có:

\(x^2_1+x^2_2=\left(x_1+x_2\right)^2-2x_1x_2\\ =\left[\dfrac{-2\left(m-1\right)^2}{7}\right]-2\dfrac{\left(-m\right)^2}{7}\\ =\dfrac{4m^2-8m+4}{49}+\dfrac{2m^2}{7}\\ =\dfrac{4m^2-8m+4+14m^2}{49}\\ =\dfrac{18m^2-8m+4}{49}\)

Vậy \(x^2_1+x^2_2=\dfrac{18m^2-8m+4}{49}\).

5 tháng 4 2017

Xét phương trình 7x2 + 2(m – 1)x – m2 = 0 (1)

a) Phương trình có nghiệm khi ∆’ ≥ 0

Ta có: ∆’ = (m – 1)2 – 7(-m2) = (m – 1)2 + 7m2 ≥ 0 với mọi m

Vậy phương trình (1) luôn luôn có nghiệm với mọi giá trị của m

b) Gọi x1, x2 là hai nghiệm của phương trình (1)

Ta có:

x\(\dfrac{1}{2}\)+x\(\dfrac{2}{2}\)=(x1+x2)2−2x1x2

=[\(\dfrac{-2\left(m-1\right)^2}{7}\)]-2\(\dfrac{\left(-m\right)^2}{7}\)

=\(\dfrac{4m^2-8m+4}{49}\)+\(\dfrac{2m^2}{7}\)

=\(\dfrac{4m^2-8m+4+14m^2}{49}\)

=\(\dfrac{18m^2-8m+4}{49}\)

vậy x\(\dfrac{2}{1}\)+x\(\dfrac{2}{2}\)=\(\dfrac{18m^2-8m+4}{49}\)

hihi