K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

(Bạn viết phương trình nhé, nó dài nên ngại viết lắm =.=) (a = 1; b' = - m - 1; c = m ^ 2) 

Xét phương trình trên có a = 1 khác 0 => Phương tình là phương trình bậc 2 một ẩn 

Để phương trình có 2 nghiệm phân biệt <=> \(\Delta'>0\)

                                                                <=> b' ^ 2 - ac > 0

                                                                <=> (- m - 1) ^ 2 - 1. m ^ 2 > 0

                                                                <=> m ^2 + 2m + 1 - m ^ 2 > 0 

                                                                <=> 2m + 1 > 0

                                                                <=> 2m > - 1

                                                                <=> m > - 0,5

Vậy để phương trrình có 2 nghiệm phân biệt thì m > - 0,5

7 tháng 1 2018

Đề phòng bạn không biết thôi nha: \(ax^2+bx+c=0\)

                                                      b = 2b'

                                      \(\Delta'=b'2-ac\)

                 \(\Delta'\)> 0 thì pt có 2 nghiệm phân biệt, = 0 thì có nghiệm kép, < 0 thì vô nghiệm, tóm lại là như\(\Delta\)thôi

21 tháng 3 2018

a. x2 – 2(m+3)x + m2+3=0 (1)

Ta có: Δ' = [-(m+3)]2 -1.(m2 +3) = m2 + 6m + 9 – m2 - 3

= 6m +6

Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

Δ' > 0 ⇔ 6m + 6 > 0 ⇔ 6m > -6 ⇔ m > -1

Vậy m > -1 thì phương trình đã cho có 2 nghiệm phân biệt

b. (m+1)x2+4mx+4m -1 =0 (2)

Ta có: Δ' = (2m)2 – (m +1)(4m -1) = 4m2 – 4m2 + m – 4m +1

= 1 – 3m

Phương trình (2) có 2 nghiệm phân biệt khi và chỉ khi:

*m +1 ≠ 0 ⇔ m ≠ -1

và *Δ' > 0 ⇔ 1 -3m > 0 ⇔ 3m < 1 ⇔ m < 1/3

Vậy m < 1/3 và m ≠ -1 thì phương trình đã cho có 2 nghiệm phân biệt

23 tháng 6 2017

denta , =(m -1) -(m +1 )

=\(m^2-2m+1-m-1=m^2-3m\)

phương trình có hai nghiệm phân biệt 

\(\Leftrightarrow denta>0.\)

\(\Leftrightarrow m^2-3m>0\)

\(\Leftrightarrow m\left(m-3\right)>0\)

\(\Leftrightarrow m>3ho\text{ặ}cm< 0\)

23 tháng 6 2017

m > - 1/3

28 tháng 6 2020

Theo hệ thức vi ét thì : \(x_1.x_2=m+8\)

\(< =>\hept{\begin{cases}x_1=\frac{m+8}{x_2}\\x_2=\frac{m+8}{x_1}\end{cases}}\)

Khi đó : \(\left(\frac{m+8}{x_2}\right)^3-\frac{m+8}{x_1}=0\)

\(< =>\frac{\left(m+8\right)^3}{x_2^3}-\frac{m+8}{x_1}=0\)

\(< =>\left(m+8\right)\left(\frac{\left(m+8\right)^2}{x_2^3}-\frac{1}{x_1}\right)=0\)

\(< =>\orbr{\begin{cases}m=-8\\\frac{m^2+16m+64}{x_2^3}=\frac{1}{x_1}\left(+\right)\end{cases}}\)

\(\left(+\right)< =>m^2.x_1+16m.x_1+64x_1=x_2^3\)

Tự giải tiếp :D

18 tháng 10 2019

a) pt có nghiệm kép \(\Leftrightarrow\)\(\Delta=45-12m=0\)\(\Leftrightarrow\)\(m=\frac{15}{4}\)

b) Viet \(\hept{\begin{cases}x_1+x_2=1\\x_1x_2=3m-11\end{cases}}\)

\(2019=2017x_1+2018x_2=2017\left(x_1+x_2\right)+x_2=2017+x_2\)\(\Leftrightarrow\)\(x_2=2\)\(\Rightarrow\)\(x_1=-1\)

\(\Rightarrow\)\(3m-11=-2\)\(\Leftrightarrow\)\(m=3\)

13 tháng 4 2020

a) Ta có: \(\Delta=45-12m\). Để pt có nghiệm kép thì:

\(\Delta=45-12m=0\)

\(\Leftrightarrow m=\frac{15}{4}\Rightarrow x_1=x_2=\frac{1}{2}\)

b) Để pt (1) có 2 nghiệm phân biệt x1;x2 thì \(\Delta=45-12m>0\)

\(\Leftrightarrow m< \frac{15}{4}\). Theo hệ thức Vi-et x1+x2=1; x1x2=3m-11. Khi đo hệ:

\(\hept{\begin{cases}x_1+x_2=1\\2017x_1+2018x_2=2019\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=-1\\x_2=2\end{cases}}}\)

Mà ta có: x1x2=3m-11

<=> m=3 (nhận)

Vậy m=3 là giá trị cần tìm

a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)

Vậy PT luôn có 2 nghiệm phân biệt.

b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi

\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)

29 tháng 4 2019

trả lời

bn tìm đenta rồi cho lớn hơn 0 đã đi

hok tốt

29 tháng 4 2019

Có \(\Delta=\left(2m-1\right)^2-4\left(m+1\right)\)

         \(=4m^2-4m+1-4m-4\)

           \(=4m^2-8m-3\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow\orbr{\begin{cases}m< \frac{2-\sqrt{7}}{2}\\m>\frac{2+\sqrt{7}}{2}\end{cases}}\)(1)

Theo Vi-et \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1x_2=m+1\end{cases}}\)

Vì \(x_1>x_2>0\Rightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}}\)

                          \(\Leftrightarrow\hept{\begin{cases}1-2m>0\\m+1>0\end{cases}}\)

                          \(\Leftrightarrow\hept{\begin{cases}m< \frac{1}{2}\\m>-1\end{cases}}\)

                         \(\Leftrightarrow-1< m< \frac{1}{2}\)(2)

Từ (1) và (2) \(\Rightarrow-1< m< \frac{2-\sqrt{7}}{2}\)

22 tháng 11 2015

 

\(\left(m+1\right)x^3+\left(3m-1\right)x^2-x-4m+1=0\)

<=> (m.x3 - m) + (x- x) + (3mx- 3m) - (x- 1) = 0 

<=> m(x - 1)(x+ x + 1) + x(x - 1).(x+1) + 3m(x - 1)(x+1) - (x -1)(x+ 1) = 0 

<=> (x - 1).[m(x+ x+ 1) + x(x+1) + 3m(x+ 1) -  (x+1)] = 0 

<=> (x - 1).(mx2 + mx + m + x+ x + 3mx + 3m - x -  1) = 0 

<=> (x - 1).[(m + 1)x2 + 4mx + 4m - 1)] = 0  (*)

b)  (*) <=> x = 1 hoặc (m + 1)x2 + 4mx + 4m - 1) = 0  (1)

Để (*) có 3 nghiệm phân biệt trong đó có 2 ngiệm âm <=> (1) có 2 nghiệm âm phân biệt 

<=> m+ 1 \(\ne\) 0 và  \(\Delta\)' > 0 và x1.x> 0 và x+ x< 0 trong đó x1; xlà hai nghiệm của (1)

+) m + 1 \(\ne\) 0 <=> m \(\ne\) - 1

+)  \(\Delta\)' = (2m)2 - (m + 1).(4m- 1) = 4m2  - 4m- 3m +  1 = -3m + 1 > 0 => m < 1/3

+) Theo hệ thức Vi ét ta có: x1 + x\(-\frac{4m}{m+1}\); x1.x\(\frac{4m-1}{m+1}\)

=> \(-\frac{4m}{m+1}\) < 0 và \(\frac{4m-1}{m+1}\) > 0 

=> \(\frac{4m}{m+1}>0\) và \(\frac{4m+1}{m+1}\) > 0 => \(\frac{4m}{m+1}\) > 0 => 4m  và m + 1 cùng dấu

=> m > 0  hoặc m < -1

Kết hợp điều kiện m < 1/3 và m \(\ne\) -1 => m < - 1 hoặc 0  < m < 1/3

Vậy...

22 tháng 11 2015

đơn giản .tìm NCPT hoac TLCT gi do la co