Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) \(x^2-y^2+3x-3y=\left(x^2-y^2\right)+\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)
b) \(5x-5y+x^2-2xy+y^2=\left(5x-5y\right)+\left(x^2-2xy+y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)^2=\left(x-y\right)\left(x-y+5\right)\)
c) \(x^2-5x+4=x^2-x-4x+4=\left(x^2-x\right)-\left(4x-4\right)\)
\(=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)
\(x^2-x+1=k^2\left(k\in Z\right)\)
\(\Leftrightarrow4x^2-4x+4=4k^2\)
\(\Leftrightarrow\left(2x-1\right)^2+3=\left(2k\right)^2\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(2k\right)^2=-3\)
\(\Leftrightarrow\left(2x-2k-1\right)\left(2x+2k-1\right)=-3\)
Ta có cảc trường hợp:
TH1: \(\hept{\begin{cases}2x-2k-1=1\\2x+2k-1=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-k=1\\x+k=-1\end{cases}\Leftrightarrow}x=0\) (loại)
TH2: \(\hept{\begin{cases}2x-2k-1=-1\\2x+2k-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-k=0\\x+k=2\end{cases}}\Leftrightarrow x=1\) (thỏa mãn)
TH3: \(\hept{\begin{cases}2x-2k-1=3\\2x+2k-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x-k=2\\x+k=0\end{cases}\Leftrightarrow}x=1\) (TM)
TH4: \(\hept{\begin{cases}2x-2k-1=-3\\2x+2k-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x-k=-1\\x+k=1\end{cases}}\Leftrightarrow x=0\) (loại)
Vậy x = 1
Đổi |1+x|=|-1-x|
\(\Rightarrow A=\left|x\right|+\left|-1-x\right|\)
Áp dụng BĐTGTTĐ |A|+|B|\(\ge\)|A+B|
\(\Rightarrow A=\left|x\right|+\left|-1-x\right|\)\(\ge\left|x+\left(-1\right)-x\right|=1\)
Dấu = xảy ra khi x.(-1-x)\(\ge\)0
Suy ra \(\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy Min A= 1 \(\Leftrightarrow\)x=\(\hept{\begin{cases}0\\-1\end{cases}}\)
K chắc lắm sai bỏ qua nhá