Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N L H
Do MN là đường trung bình của tam giác ABD nên MN // BD. Vậy thì \(LH\perp MN.\)
Lại có LN là đường trung bình của tam gaisc ACD nên LN // CD. Do \(MH\perp CD\Rightarrow MH\perp LN.\)
Xét tam giác LNM có LH và MH là các đường cao nên H là trực tâm tam giác LMN.
Ta có M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của ∆ABD => MN // BD
Mà AC⊥BD nên MN⊥AC hay LA⊥MN (1)
N, L lần lượt là trung điểm của AD, AC nên NL là đường trung bình của ∆ADC => NL // DC
Mà MH⊥DC nên NL⊥MH (2)
Từ (1) và (2) suy ra H là trực tâm của tam giác MNL (đpcm)
Bạn tự vẽ hình nhé!
À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá
1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .
Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC
=> CH là đường cao thứ 3 của \(\Delta\) ABC
=> CH \(\perp\) AB (1)
mà BD \(\perp\) AB (gt) => CH//BD
Có BH \(\perp\) AC (BE là đường cao)
CD \(\perp\) AC
=> BH//CD (2)
Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành
2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM
Có O là trung điểm của AD hay OA = OD
Xét \(\Delta\) AHD có:
HM = DM
OA = OD
=> OM là đường trung bình của \(\Delta\) AHD
=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM
XONG !!